Impact of emissions from combustion sources, fossil fuel and biomass burning, on ambient concentrations of black carbon (BC) in the Milan metropolitan area

Amirhossein Mousavi1, Mohammad H. Sowlati1, Christopher Lovett1, Roberto Boffi2, Alessandro Borgini3, Cinzia De Marco1, Ano A. Ruprecht1,5

1 University of Southern California, Department of Civil and Environmental Engineering, Los Angeles, CA, USA
2 Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
3 Fondazione IRCCS, Istituto Nazionale del Tumore, Pulkovniik Department, Milan, Italy
4 Fondazione WWCS, Istituto Nazionale del Tumore, Environmental Epidemiology Unit, Milan, Italy
5 International Society of Doctors for Environment (ISDE) – Italia UNIDISE

Introduction

Motivation
Carbonaceous Matter (CM) composed of Organic Carbon (OC) and Black Carbon (BC), is a major constituent of atmospheric aerosols and one of the most important components that alter the chemical and radiative properties of atmospheric compounds.

In addition to its impact on climate change, BC has been associated with adverse health effects. Earlier studies have used the Equivalent Black Carbon (EBC) model for source apportionment of BC to its major sources including BCbb (biomass burning) and BCf (fossil fuel).

Objectives
- To determine the spatial and temporal variability of fossil- and non-fossil-originated BC concentrations in the city of Milan and Bareggio (sub-urban area to the west of the city).
- To investigate the effect of increased biomass burning in wintertime to total BC concentrations.

Methodology

Sampling Sites
- Metropolitan Milan area:
 - Urban traffic
 - Major source: Fossil fuel
- Bareggio:
 - Sub-urban city
 - Major sources: Fossil fuel and biomass burning

Sampling Period
- July – August 2017: warm phase
- September-October 2017: intermediate phase
- January-March 2018: winter phase

Instrumentation
BC concentrations were measured in 7 wavelengths in Milan with Aethalometer (AE31), and 2 wavelengths in Bareggio with Aethalometer (AE51), both operating with a time resolution of 5 min.

The PM2.5 samples were analyzed for elemental carbon (EC) concentrations by the thermal evolution/optical transmittance method, using the National Institute for Occupational Safety and Health (NIOSH) Thermal Optical Transmission (TOT) Protocol.

Results

Seasonal variation of total BC concentrations at sampling sites

Conclusions
- Our results revealed that the suburban site of Bareggio had a higher annual total BC concentration (2.76 μg.m-3) in comparison to the central Milan site.
- BC concentrations in the winter phase were approximately 3-5 times higher than the levels in the summer phase, which can be mostly attributed to biomass burning.
- EBC source apportionment results indicated that, while annually averaged fossil fuel combustion contributions to the total BC concentrations are dominant in both sites (84.6% for Milan and 61.9% for Bareggio), biomass burning contribution reaches 30.5% and 60.5% in winter phase for Milan and Bareggio, respectively.
- These results highlight the significant impact of wood burning for residential heating on the total BC concentrations, particularly in suburban areas of metropolitan Milan, and can be used as a guide in future regulatory efforts to decrease the concentrations of atmospheric BC and minimize the deleterious health impacts of this air pollutant in the area.

References

Acknowledgment
This study was supported by the National Institute of Health (NIH) grants 1R21AG050301-01A1 and 1R1FAG051521-01. We would also like to acknowledge the USC Viterbi Dean’s PhD Fellowship award.