Characteristics of chemical composition for ultrafine particle collected at Narita International Airport

Katsumi Saitoh1,2, Akihiro Fushimi2, Yuji Fujitani2 and Nobuyuki Takegawa2
1Environmental Science Analysis & Research Laboratory, 1-500-82 Matsuo-Yosegi, Hachimantai 028-7302, Japan
2National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan
2Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji 192-0397, Japan
(*Author for correspondence, e-mail: XLL04042@yahoo.com)

Introduction & Background Jet engine aircraft are a significant source of atmospheric ultrafine particle (UFP, particles with aerodynamic diameter < 100 nm) and exist ubiquitously from ground level to the upper troposphere. Although countermeasures against exhaust particles from jet engines are already being implemented, at international airports, the number of flight departures and arrivals of aircrafts are increasing annually and the runway is also expanding; therefore, the influence on the atmospheric environment near airports is of great concern. Consequently, we collected particulate samples from an area near a runway at the Narita International Airport (Figure 1), Japan, during winter period (February) and summer period (July—August) in 2018, and performed a chemical analysis (Figure 2).

Sampling Two NanoMoudi II impactors were used to collect size-resolved particles (Figure 2). To distinguish the effect of aircraft emissions, the samples were collected during the daytime (during aircrafts operation hours; 7:00–22:00) and nighttime (during non-operation hours; 0:00–6:00). We obtained three daytime (sample ID: #W1, #W2, #W3) and one nighttime (sample ID: #W4) samples in the winter period. In the summer period two daytime (sample ID: #S1, #S3) and two nighttime (sample ID: #S2, #S4) samples were obtained.

Particle mass The particle masses of the size-resolved particles samples were determined using a microbalance (readability 0.1 μg, UMX 2, Mettler-Toledo).

Chemical analysis Analysis of the EC and OC were by using a thermal/optical carbon analyzer (DRI Model 2001 Carbon Analyzer). The ionic species (anion: F−, Cl−, NO2−, Br−, NO3−, PO43− and SO42−; cation: Na+, NH4+, K+, Mg2+ and Ca2+) were analyzed using a ion chromatography (Metrohm, IC 850). The elemental composition was analyzed using PIXE system at the Nishina Memorial Cyclotron Center, Japan Radioisotope Association.

Results & Conclusions The proportions of OC / EC, ions, and elemental constituents in the particles mass were different for daytime and nighttime collected samples (Figure 3). In the nighttime samples EC has not been detected almost. On the other hand, EC was detected from most daytime samples, and that proportion ranged in 5—24%. The proportion of ions constituents was ranged in 2—24%, and the main ions were NO3− and SO42−. The proportion of the elemental components was 0.2—10%, except for 10—18 nm size particles of #W4 and #S3. The 10—18 nm size particles in #W4 and #S3 were mainly Al and Si in addition to S (insoluble sulfur). Insoluble sulfur in UFP accounts for about 50%, indicating the importance of insoluble sulfur as well as sulfate derived from fuel (Figure 4).

Acknowledgements This work was supported by the Environment Research and Technology Development Fund (5-1709) of the Ministry of the Environment, Japan. We thank Narita International Airport Corporation and Narita International Airport Promotion Foundation for helping with the field measurements in Narita International Airport.