Low Cost PM Sensors; are they Suitable for Measuring Subtle Particle Variations in Ambient or Indoor Air?

Scott Lowther\(^1,2\), Kevin Jones\(^1\), Xinming Wang\(^2\), Duncan Whyatt\(^1\), Oliver Wild\(^1\)

\(^1\) Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
\(^2\) Chinese Academy of Sciences, 511 Kehua Rd, Tianhe, Guangzhou 510640, China

Background

Researchers are increasingly interested in the use of low-cost sensors to supplement the more scarce and static air pollution monitoring stations in order to achieve higher spatial distribution measurements of PM. Similarly, taking a single measurement within an indoor environment makes the assumption that the air is homogeneous, neglecting spatial variation. During the impending age of low-cost sensors, these are likely to play an increasingly important role in indoor PM measurement.

Results

- Measured performance was much lower than previous laboratory tests \((R^2 = 0.99)\) (Wang et al., 2015).
- The sensors displayed low sensitivity at lower PM concentrations.
- Sensors were able to effectively indicate when concentrations were increased above background, but were unable to indicate when concentrations dropped below background, i.e. when operating an air purifier.

Advantages

- Low-cost (<£100)
- Unintrusive
- Spatially distributed PM measurements
- Portable, battery powered
- Commercial availability improves citizen involvement and interest

Limitations

- Insensitive at lower concentrations
- Short Lifetimes (6 months to years)
- High Calibration and data processing costs
- Relatively low reliability
- High development costs

Future Applications

- Real-time indoor air quality warming systems in residences, allowing residents to more easily mitigate pollution events. For example, simultaneously measuring indoor/outdoor PM concentrations and adjusting ventilation accordingly.
- Decreasing air exchange rates is a key method to improve the energy efficiency of buildings. However, this can have severe repercussions on indoor air quality. Low-cost sensors could help resolve this conflict.