A Step towards Standardisation of Air-Liquid Interface Exposures using a Model Diesel Aerosol

Questions?
christoph.bisig@helmholtz-muenchen.de
Motivation

- Air pollution → cardiovascular and respiratory diseases
- In vitro toxicological studies with ambient particles are needed
- Air-liquid interface vs submerged exposures
- Reference Aerosol needed for aerosol toxicology community (comparability)
- Are long-term Exposures possible?

➢ **Aim:** To investigate the in vitro effects of model particles and develop an optimized exposure protocol for the cell exposure system.

Lenz, Karg, et al., 2012 BioMed Research International
Methods – Exposure setup

Source

- dieselCAST
 - Benchtop device [1]
 - Two flames
 - Propane flame to heat up diesel [2]
 - Diffusion flame diesel [3]
 - 50-60 µL/min fuel [4]

- Dilution
 - Porous Tube Diluter [5]
 - Ejector Diluter [6]
 - Uses purified compressed air
Methods – Exposure setup

Source
- dieselCAST flame soot generator:
 - 2 x 6h
- Ambient filtered air:
 - 2 x 18h

Exposure System
- Vitrocell™ aerosol exposure station
 - Flow 50 mL/min
 - Humidity 85%
 - Particle deposition through diffusion

Cell monoculture
- A549 monoculture:
 - 48h Exposure
 - Endpoints:
 - Cell viability
 - Gene expression
 - Genotoxicity

Timeline
- 24h Cells on insert
- 24h Cells at ALI
- 6h diesel
- 18h Ambient filtered air
- 6h diesel
- 18h Ambient filtered air
Results – Aerosol characterisation

Particle mass (Aethalometer\(^6\), online Black Carbon)
\(\rightarrow 270 \mu g/m^3\) (avg over 6h, n = 4)

Size Distribution (SMPS\(^6\), online)
\(\rightarrow\) Bimodal distribution with peaks at 140 nm and 550 nm

Particle number (CPC\(^5\), online)
\(\rightarrow 3 \times 10^4/cm^3\) Particles (avg over 6h, n = 4)

\(^5\) CPC: Condensation Particle Counter; Particle growth through condensation to optical detectable sizes

\(^6\) SMPS: Scanning Mobility Particle Sizer; Size distribution through sequential analysis of selective narrow particle sizes (coupled to CPC\(^5\))

\(^6\) Aethalometer: Black Carbon mass; Light absorption on Filter through deposited particles
Results – Aerosol characterisation

- Gaseous compounds (FTIR\textregistered and FID\textregistered, online)
 - Analysis is ongoing
- Chemical characterisation (offline)
 - OC/EC Analyser
 - Particles are **EC-rich**
 - GC-MS\textregistered
 - Quantification of some PAHs, alkanes, and more
 - Analysis ongoing
 - GCxGC-MS
 - Non-targeted approach
 - What other SVOCs are there?
 - Analysis ongoing

\textregistered FTIR: Fourier-transform InfraRed spectroscopy; absorption spectroscopy of hot-filtered aerosol
\textregistered FID: Flame Ionization Detector; Ion detection by combustion of organic carbon in a hydrogen flame ("as propane")
\textregistered GC-MS: Gas chromatography–mass spectrometry; Schnelle-Kreis et al., Anal Bioanal Chem (2011)
Results – Cell viability

- Microscopy
 - Visual inspection of cells
- Alamar Blue Assay
 - Cell metabolism
- LDH Assay (Lactate Dehydrogenase)
 - Membrane disruption

- Good cell viability
- Similar cell viability in different settings

Cell viability

Dose: 270 µg/m² Black Carbon and 3*10⁴/cm² Particles

Controls: i) Incubator control w/ HEPES, w/o CO2; ii) Incubator control w/ CO2
 iii) Positive controls: T-X (LDH), TNFa and HQ (qPCR), H₂O₂ (Comet)
Results – Gene expression

• Gene expression analysis
• Oxidative stress
 – HMOX1 (or HO-1) and SOD2 are first responders to stress
• Inflammation
 – Three cytokines
 – Interleukin 1 beta is upregulated
• Cytochrome P450 (CYP1A1)
 – Induced by PAHs

> Cells respond to the prolonged exposure

Gene Expression Analysis

Dose: 270 µg/m³ Black Carbon and 3*10⁴/cm³ Particles
Controls: i) Incubator control w/ HEPES, w/o CO2; ii) Incubator control w/ CO2
iii) Positive controls: T-X (LDH), TNFa and HQ (qPCR), H₂O₂ (Comet)
Results – Genotoxicity

- Genotoxicity in A549 cells using Comet Assay
 - dieselCAST induces high genotoxicity in A549 cells

Comet Assay

- **Dose:** 270 µg/m3 Black Carbon and 3×10^4/cm3 Particles
- **Controls:**
 1. Incubator control w/ HEPES, w/o CO2
 2. Incubator control w/ CO2
 3. Positive controls: T-X (LDH), TNFa and HQ (qPCR), H$_2$O$_2$ (Comet)
Summary

- dieselCAST
 - Model diesel Aerosol
 - 2 x 6h exposure (overnight filtered ambient lab-air)
- Cell Exposure system
 - 48h total runtime possible
 - Different settings tested in 2 repetitions (modules, buckets)
- A549 monoculture
 - At Air-Liquid Interface
 - Cells in monolayer
Conclusion/ Outlook

- **Stable** aerosol over 4 days (6h/day)
- No cytotoxicity/ **good cell viability**
- Increase in **oxidative stress**, (pro-)**inflammation**, and xenobiotic metabolism
- **Genotoxicity**
- More testing needed if dieselCAST suitable as reference aerosol
- **Aerosol Characterisation**
 - Offline measurement of **SVOCs**
 - Online gaseous characterisation
- **Repetition** of these experiments (for statistical analysis)

Thank you for your attention

Questions? christoph.bisig@helmholtz-muenchen.de

Involved people at CMA (alphabetically)
- Anja Huber
- Christoph Bisig, Dr.
- Elias J. Zimmermann
- Erwin Karg, Dr.
- Jürgen Orasche, Dr.
- Gert Jakobi, Dr.
- Nadine Gawlitta
- Ralf Zimmermann, Prof.
- Sebastian Öder, Dr.
- Sebastiano di Bucchianico, Dr.
- Stefanie Bauer, Dr.
- Stephanie Binder

A special thanks to:
The Hong Kong Polytechnic University
- Jin Ling (aka Nathanael)
- He Tangtian (aka TT)