Update on sub-23nm exhaust particle number emissions using the DownToTen sampling and measurement systems

Jon Andersson, Ricardo UK

Sub-23nm PN vehicle technology effects using the DTT system

- Introduction
  - The DTT measurement systems
  - Simultaneous measurements using lab and PEPS systems
  - Round up of PN measurements using the lab-based system in DTT
  - Concluding remarks
  - Further work
Introduction

- “DownToTen” (DTT) project is one of three EU H2020 funded projects developing robust portable exhaust particle sampling system (PEPS) methodologies that will enhance the regulatory approach for particle number (PN) emissions including the sub-23 nm region
  - New regulation for “PN_{10}” seems highly likely, in the next 3-5 years
- Initial direction of the H2020 projects, was to assess latest generations of direct injection gasoline and diesel engines under real world conditions
  - but the projects must now consider all technologies in the post-Euro 6 “technology neutrality” context
- DTT has developed a sub-23 nm PN sampling and measurement approach, and is now testing lab-based and PEPS prototypes in parallel
- This study presents results from those lab and PEPS systems running together
- But the focus of our results is on the assessment of the presence and magnitude of <23nm emissions from a large number of tests performed by various partners within DTT
  - with lab-based systems
Sub-23nm PN vehicle technology effects using the DTT system

- Introduction

- The DTT measurement systems
  - Simultaneous measurements using lab and PEPS systems
  - Round up of PN measurements using the lab-based system in DTT
  - Concluding remarks
  - Further work
DTT Measurement Systems

- The DTT lab measurement system consists of two porous tube diluters (PD1, PD2) and a third, optional dilution stage for sampling high particle number concentrations. This additional dilution is supplied by an ejector diluter (ED).

- Between the two PD either an evaporation tube (ET) or catalytic stripper (CS) can be placed.

- The DTT PEPS simplifies dilution and is reduced in size, weight and power consumption.

```
LAB

PEPS

DTT shaker system (TUG) for robustness testing
```
Sub-23nm PN vehicle technology effects using the DTT system

• Introduction
• The DTT measurement systems

Simultaneous measurements using lab and PEPS systems

• Round up of PN measurements using the lab-based system in DTT
• Concluding remarks
• Further work
DTT lab and PEPS systems in parallel (PHEV with GPF)

- GDI PHEV with GPF (Euro 6d-temp)
- Broadly similar PN emissions between lab system and PEPS
  - Dilution corrected only
  - Calibration approach to be determined
- GPF effective in the <23nm region
  - GPF equipped vehicle shows low levels of >4nm PN (CVS) and >10nm PN (PEPS)
Sub-23nm PN vehicle technology effects using the DTT system

- Introduction
- The DTT measurement systems
- Simultaneous measurements using lab and PEPS systems

- **Round up of PN measurements using the lab-based system in DTT**
- Concluding remarks
- Further work
Summary of test variables

<table>
<thead>
<tr>
<th>Test Sites</th>
<th>Technologies</th>
<th>Aftertreatment</th>
<th>Cycles</th>
<th>Other factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ricardo</td>
<td>Diesel</td>
<td>DPF</td>
<td>NEDC</td>
<td>$T_{test}$ -7°C to 30°C</td>
</tr>
<tr>
<td>AVL</td>
<td>Gasoline PFI</td>
<td>DOC</td>
<td>WLTC</td>
<td>Hot and cold start</td>
</tr>
<tr>
<td>LAT</td>
<td>Gasoline GDI</td>
<td>LNT</td>
<td>JC08</td>
<td>DPF regeneration</td>
</tr>
<tr>
<td>JRC</td>
<td>GDI hybrid</td>
<td>SCR</td>
<td>US06</td>
<td>LNT deNOx</td>
</tr>
<tr>
<td></td>
<td>PFI hybrid</td>
<td>SCRF</td>
<td>on-dyno RDE</td>
<td>LNT deSOx</td>
</tr>
<tr>
<td>GDI performance</td>
<td>TWC</td>
<td>WMTC</td>
<td></td>
<td>High O$_2$ fuel (as R-OH)</td>
</tr>
<tr>
<td>CNG van and PC</td>
<td>GPF (coated, 4W)</td>
<td>R47</td>
<td></td>
<td>High PN index fuel</td>
</tr>
<tr>
<td>Moped (4T)</td>
<td>GPF (uncoated, 3W)</td>
<td>TfL (city)</td>
<td></td>
<td>Euro 4, 5, 6b, 6c</td>
</tr>
<tr>
<td>Motorcycle (4T)</td>
<td>[+ all commercially available combinations of above]</td>
<td>Steady states</td>
<td></td>
<td>Post Euro 6c</td>
</tr>
<tr>
<td>Gasoline dual GDI/PFI</td>
<td>Acceleration</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Wide range of technologies, fuels, regulatory cycles, temperatures, operating conditions, aftertreatment…
- All data are shown corrected for dilution only NOT for losses (no PCRF)
**PN$_{10}$ v PN$_{23}$: regulatory regime (no PCRF)**

- Most technologies compliant with 6×10$^{11}$#/km for both >23nm AND >10nm ranges

$\text{PN}_{10}$
Some technologies may have PN emissions that are compliant with the current limit value (\( \text{PN}_{23} \) range), but would exceed the regulatory threshold if \( \text{PN}_{10} \) were measured instead.

- Includes:
  - A 4-stroke motorcycle with a three-way catalyst on the WMTC
  - A CNG van with a TWC on WLTCs
  - A GDI with an uncoated GPF

\( \text{PN}_{10} \) v \( \text{PN}_{23} \): outside regulatory regime (no PCRF)
Only non-DPF diesels have shown emissions $>10^{13}$#/km
- No independent <23nm mode present
**PN_{10} v PN_{23}: outside regulatory regime (no PCRF)**

- Whole emissions cycle data, where PN_{10} > 6x10^{11}#/km
  - PN_{10} always <10x PN_{23} levels, generally <5x
  - With DPF and GPF always <3x, even during tests featuring DPF regeneration

```
$PN_{10}$
```
PN_{sub10} v PN_{23}: regulatory regime (no PCRF)

- Sub-10nm PN data (2.5nm, 4nm, 7nm d50 data included)
- Contains conventional vehicles that dominate the fleet
  - PFI vehicles with TWC, DPF equipped diesels
$PN_{sub10}$ v $PN_{23}$: outside regulatory regime (no PCRF)

- Sub-10nm PN data (2.5nm, 4nm, 7nm d50 data included)
  - Higher emitters reflect those for $PN_{10}$
  - Some (PFI!) technologies would uniquely meet the limit for $PN_{23}$ and $PN_{10}$, but fail at $PN_{sub10}$
- Performance motorcycle and CNG applications
Whole emissions cycle data, where $PN_{sub10} > 6 \times 10^{11}$#/km

- No excessive PN increases in <10nm region when DPF and GPF are present
- High PN emissions observed with some PFI and CNG applications, without particle filters!
  - (over 100x >23nm levels for CNG)
Sub-23nm PN vehicle technology effects using the DTT system

- Introduction
- The DTT measurement systems
- Simultaneous measurements using lab and PEPS systems
- Round up of PN measurements using the lab-based system in DTT

**Concluding remarks**

- Further work
Concluding remarks

- Most vehicles do not exhibit substantially elevated <23nm PN emissions, but evidence is emerging of elevated <23nm PN emissions in some cases
  - Ironically, these seem to be from technologies that are currently excluded from any kind of PN control…
    - Performance motorcycles and light-duty CNG passenger cars
    - Both would currently be considered niche

- Data are from full-flow dilution systems, and there is still a possibility there is an influence of sampling artefacts related to CVS and/or transfer system, and these should be investigated

- If these PN are real, and future regulation demands technology harmonisation (all technologies, same limits), how to control applications with high emissions below 10nm, but low emissions above 10nm, without imposing damagingly stringent limits on other technologies?
Sub-23nm PN vehicle technology effects using the DTT system

• Introduction
• The DTT measurement systems
• Simultaneous measurements using lab and PEPS systems
• Round up of PN measurements using the lab-based system in DTT
• Concluding remarks

• **Further work**
Further work

- **Functional aspects**
  - Vibration testing of the PEPS on shaker rig

- **Parallel raw and dilute sampling**
  - Focus on ‘extreme sources’ identified in previous work during raw exhaust testing
  - Investigate/eliminate potential artefacts

- **Calibration and correction for losses**

- **Understanding formation pathways and chemistry of nanoparticles**

- **Continue the parallel workstream looking at semi-volatile and secondary particles**