HIGH EMISSION RISKS DESPITE HIGHLY EFFICIENT EMISSION CONTROL

21st ETH-Conference.
June 20th, 2017.
Zürich, Switzerland.

Gerrit Kadijk
TODAY

1. Introduction.
2. Risks & stakeholders.
3. Risk investigation, facts and figures.
5. Two contributions for reduction of risks.

Mission: Our noble task is to reduce (vehicle) emissions which may contribute to a better air quality and a less negative health impact.
MISSION OF TNO

TNO connects people and knowledge to create innovations that boost the sustainable competitive strength of industry and well-being of society.

‘INNOVATION FOR LIFE’

TNO is an independent Dutch multidisciplinary research organization for applied research (no shareholders), defined in the Dutch TNO law.

3000 employees.
REAL WORLD EMISSION RESEARCH

1968 - 2017

L’histoire se répète.
OBVIOUS RELATIONSHIP OF SAFETY RISK & HEALTH

Risk is the potential of losing something of value.

This risk is accepted by many stakeholders because the direct health effects are very obvious.

We are willing to pay and to act in order to have more private safety in traffic.
URBAN POPULATIONS & PROSPERITY & DRAWBACK

Last 50 years urban populations tripled. Air pollution is an assassin because it is related to economic activities.

Contributors to grow of urban populations:

• Industrialisation
• Infrastructure
• Mobility

High emission risks despite highly efficient emission control
AIR QUALITY OF URBAN AREAS ON A WIDER SCALE

Sources of air pollution:
- Industrial activities
- Traffic
- Households
- Agriculture

Value: Our health & quality of life

<table>
<thead>
<tr>
<th>EC 2008/50/EG</th>
<th>Annual basis</th>
<th>Daily basis</th>
<th>Maximum daily 8 hour mean</th>
<th>Permitted exceedances per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₂</td>
<td>40 [µg/m³]</td>
<td>200 [µg/m³]</td>
<td>-</td>
<td>18 [day]</td>
</tr>
<tr>
<td>PM10</td>
<td>40 [µg/m³]</td>
<td>50 [µg/m³]</td>
<td>-</td>
<td>35 [day]</td>
</tr>
<tr>
<td>PM2.5</td>
<td>25 [µg/m³]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO</td>
<td>-</td>
<td>-</td>
<td>10 [mg/m³]</td>
<td>-</td>
</tr>
</tbody>
</table>

Economic prosperity starts innocent but the sting is in the tail. Traffic is one of the contributors.
Although the total vehicle mileage between 2003 and 2013 slightly increased, air quality in many regions improved substantially. Certain areas and cities still have a way to go.

http://www.eea.europa.eu/themes/air/interactive/pm10
Applied fuel injection technologies cause a decrease of PM10 emissions. Diesel Particulate Filters will contribute to a further decrease. Source: CBS

What is the emission performance of older vehicles which are exported? DPF REMOVAL and/or manipulation is a risk because engine technologies deteriorate.
NOx EMISSIONS OF DUTCH ROAD TRAFFIC

NOx: HD and LD-gasoline decrease, **LD-diesel and LCVs increase**.

Applied *technologies & controls* have a major impact on emissions.

Source: CBS

DIESELGATE ➔ EGR and/or SCR manipulation!
INVESTIGATION OF EMISSION RISKS

Assumption:
Real world emission \textit{risks} are related to \textit{societal systems & stakeholders}.

Impact = Risk * Probability
WHO IS RESPONSIBLE FOR EMISSIONS?

<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Issue or risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 European government</td>
<td>Quality of legislation, CO₂ fleet tax system</td>
</tr>
<tr>
<td>2 National government</td>
<td>Tax system, air quality policies</td>
</tr>
<tr>
<td>3 Type approval authority</td>
<td>Quality of type approval, span of control</td>
</tr>
<tr>
<td>4 Manufacturer</td>
<td>Quality of vehicle (on the road!)</td>
</tr>
<tr>
<td>5 Press</td>
<td>Dissemination and quality of information</td>
</tr>
<tr>
<td>6 Non governmental organisation</td>
<td>Knowledge & opinions & pressure</td>
</tr>
<tr>
<td>7 Scientist</td>
<td>Reliability of research & watchdog</td>
</tr>
<tr>
<td>8 Dealer - Service shop</td>
<td>Quality of buy & maintenance & repair</td>
</tr>
<tr>
<td>9 Fuel supplier</td>
<td>Fuel quality</td>
</tr>
<tr>
<td>10 Traffic controller</td>
<td>Vehicle speed & stop time & traffic jams</td>
</tr>
<tr>
<td>11 Vehicle owner</td>
<td>Governance vehicle</td>
</tr>
<tr>
<td>12 Driver</td>
<td>Driving behaviour</td>
</tr>
<tr>
<td>13 Citizen</td>
<td>Health</td>
</tr>
</tbody>
</table>
FROM VEHICLE EMISSIONS TO HEALTH IS COMPLEX

1. Fuel quality.
2. Vehicle type & technology.
3. Number of vehicles and mileages.
4. Location & Ambient conditions.
5. Propagation of the exhaust gas in ambient air.
6. Exposure to diluted exhaust gas (concentration @ frequency).
8. Susceptibility to get sick.

The most effective way to protect people against air pollution is a reduction of the emissions of sources. Vehicle emissions must be as low as possible.
The condition of modern engines and Diesel Particulate Filters is a key issue. Suitable tests for the Periodic Technical Inspection (PTI) are needed. Manipulation must be avoided.
Emission legislation of last 25 years has no effect on real world NOx emissions in urban traffic. **Real Driving Emission legislation** is needed for an improvement.
ON-ROAD NOX EMISSIONS OF VEHICLES

Truck RDE legislation of results in more than 85% NOx reduction. NOx emissions of diesel passenger cars and Euro VI trucks are similar.
RISKS OF TECHNOLOGIES IN DAILY OPERATION

<table>
<thead>
<tr>
<th>Emission Control System</th>
<th>Gasoline</th>
<th>Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Passenger cars + LCV</td>
<td>Trucks</td>
</tr>
<tr>
<td>Pollutant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust Gas Recirculation (EGR, hot)</td>
<td>NOx</td>
<td>2 – 6</td>
</tr>
<tr>
<td>Exhaust Gas Recirculation (EGR, cooled)</td>
<td>NOx</td>
<td>-</td>
</tr>
<tr>
<td>Oxidation Catalyst (OC)</td>
<td>CO + HC</td>
<td>1 – 4</td>
</tr>
<tr>
<td>Three-way Catalyst (TWC)</td>
<td>CO + HC + NOx</td>
<td>1 – 6</td>
</tr>
<tr>
<td>Particulate Filter (DPF or GPF)</td>
<td>PM + PN</td>
<td>6?</td>
</tr>
<tr>
<td>Selective Catalytic Reduction (SCR)</td>
<td>NOx</td>
<td>-</td>
</tr>
<tr>
<td>Lean NOx Trap (LNT)</td>
<td>NOx</td>
<td>-</td>
</tr>
</tbody>
</table>

High conversion rates (90 – 99.9 %) & high emission risks.
RISKS OF TECHNOLOGIES IN DAILY OPERATION

<table>
<thead>
<tr>
<th>Emission Control System</th>
<th>Gasoline</th>
<th>Diesel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Passenger cars + LCV</td>
<td>Trucks</td>
</tr>
<tr>
<td>Pollutant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust Gas Recirculation (EGR, hot)</td>
<td>NOx</td>
<td>2 – 6</td>
</tr>
<tr>
<td>Exhaust Gas Recirculation (EGR, cooled)</td>
<td>NOx</td>
<td>-</td>
</tr>
<tr>
<td>Oxidation Catalyst (OC)</td>
<td>CO + HC</td>
<td>1 – 4</td>
</tr>
<tr>
<td>Three-way Catalyst (TWC)</td>
<td>CO + HC + NOx</td>
<td>1 – 6</td>
</tr>
<tr>
<td>Particulate Filter (GPF or DPF)</td>
<td>PM + PN</td>
<td>6?</td>
</tr>
<tr>
<td>Selective Catalytic Reduction (SCR)</td>
<td>NOx</td>
<td>-</td>
</tr>
<tr>
<td>Lean NOx Trap (LNT)</td>
<td>NOx</td>
<td>-</td>
</tr>
</tbody>
</table>

Elimination, removal of parts and a lack of maintenance are the most prominent risks.
OVERVIEW CURRENT MAIN RISKS

» No **awareness** of the impact of air pollution on human health.

» **Other values** of stakeholders: Economy, mobility, status.

» **Type approval:** No adequate procedure which covers real world emissions.

» **Enforcement:** No adequate In Service Conformity Programs.

» **Quality and representativeness of results:** No independent testing bodies.

» **Transparancy:** Not sufficient emission data to inform stakeholders.

» **Periodic Technical Inspection:** No adequate test procedures.
TWO NEXT STEPS

1. New test procedures for the Periodic Technical Inspection.

2. Reliable & representative on-road emission data.
White paper

NPTI – the New Periodic Technical Inspection emission test procedure for vehicles with emission control systems.

This white paper addresses the need for new emission test procedures in Periodic Technical Inspections (PTI). These new test procedures are needed to secure the long term emission performance of modern light and heavy-duty road vehicles with particle filters (DPF or GPF) and catalytic emission control. A simple Particulate Number (PN) PTI test at low idle speed is proposed. Governments are requested to develop the final PTI test procedures.

Diesel engines without a particulate filter emit toxic substances from which solid particles in the lung penetrating size range of 10-500 nm are by far the most dangerous substance. Solid particles in this size range are responsible for 450’000 premature death in Europe, 45 % by heart attacks, 35% by strokes and the rest by cancer [10]. In order to reduce this particulate emission DPFs play a major role because they have a very high efficiency.

Euro 5+6/VI diesel vehicles have for the first time implemented Best Available Technology (BAT) for all road vehicles. Diesel Particle Filters (DPF) eliminate this particle emission more than 99%. In the EU more than 100 million of these vehicles with such powerful filters have been sold. So the
SEMS modularity

SMART EMISSION MEASUREMENT SYSTEM

Fuel consumption meter
[Litre/sec] + 1%

Analogue inputs
Max 16 inputs
-60 – 60 Volt
e.g. MAP, MAF

Additional NOx and
O₂ or NH₃ automotive sensors

Driver feedback device
Within future plans

Main unit
12V / 24V power supply

SD-card memory
Up to 160,000 hours

GPRS Modem
Remote setting and data reading

GPS
5Hz speed, altitude and position

3x CAN bus interfaces
- OBDII or WWH-OBD
- J1939
- Additional CAN

NOₓ / O₂ / Lambda automotive sensor
[ppm] and [v%]

NH₃ automotive sensor
[ppm]

K-type thermo couples
2 pieces standard
Expandable to 18 pieces
-40 – 375 degC + 1.5

Post-processing
Calculated values like:
- NOₓ / CO₂ in [g/kg]
- fuel consumption
- NOₓ, NH₃ and CO₂ [g/km]
- For HD [g/kWh]

Standard components
RDE trip of 73 km.
Duration: 1 hr and 45 min.
SEMS stores 1 Hz data.

Result: \(\text{CO}_2, \text{NOx}, \text{NH}_3 \) [g/km]
SEMS & AUTOMATED DATA PROCESSING OF ON-ROAD TEST TRIPS
THANK YOU FOR YOUR ATTENTION
CONTACT DETAILS

- TNO – Sustainable Transport & Logistics
- Gerrit Kadijk
- Researcher/Consultant
- Gerrit.kadijk@tno.nl
- M: + 31 (0)6 122 780 56

- www.tno.nl/vehicle-emissions or www.tno.nl/voertuigemissies