Variability in non-volatile particulate matter emissions of aero gas turbines caused by engine deterioration

Benjamin Brem1,2, Lukas Durdina1,2, Miriam Elser1,2, David Schönenberger1, Frithjof Siegerist4, Ari Sentyan1,2 and Jing Wang1,2

1Laboratory for Advanced Analytical Technologies Empa Dübendorf, 2Institute of Environmental Engineering, ETH Zürich, 3SR Technics Switzerland AG

Context
- Aero gas turbines emit non-volatile particulate matter (nvPM aka soot) that affects human health, visibility and climate
- These nvPM emissions are a function of:
 - Engine operating condition
 - Fuel quality
 - Ambient condition
 - Engine deterioration
- While fuel quality and ambient effects will be considered in the new nvPM standard for aero gas turbines, there is a knowledge gap about engine deterioration
- Understanding deterioration is critical for accurate emission inventories

Objective
- Identify and quantify the potential deterioration effect on emissions

Methods

Data Collection
- nvPM and gaseous emissions data were collected in the engine test cell of SR Technics with a standardized sampling system:
 - Engine Test Cell
 - Instrumentation Room
 - nvPM Instrumentation

Engine Test Cell
- Single point measurements at one engine specific location
- Over 40 emission datasets were recorded as “piggy back” measurements on outgoing engine performance runs after repair or maintenance

Data Analysis
- Engines of the same variant with a specific thrust rating and combustor technology were selected to minimize other sources of variability:

| Engine # | # Datasets | Amb. Temperature (°C) | Amb. Pressure (bar) | Fuel Flow [kg/h] | Service Life (hrs) | Cycles | EST margin [%] |
|----------+-----------+----------------------+---------------------+-----------------+-------------------+--------+---------------|
1	1	8.2 – 8.5	962	13.83	17355	7442	61.3
2	1	17.4 – 24.2	946	14.11	36210	17133	51.7
3	1	14.3 – 16.4	964	14.11	31804	15054	58.1
4	1	19.0 – 23.5	972	13.98	32910	16054	53.7
5	6	1.5 – 17.8	960 – 970	14.14	32297	15291	68

- Emission indices were calculated using a carbon balance:
 \[E_{\text{nvPM}} = \frac{\text{CO}_2}{4} \times \text{Fuel Flow} \times \text{Fuel C content} \]

- Ambient temperature correction was performed according to:
 \[E_{\text{nvPM,corr}} = E_{\text{nvPM}} \times \frac{\text{T}_{\text{ref}}}{\text{T}_{\text{measured}}} \]

- Fuel corrections were performed using the hydrogen mass content (H) of the fuel according to:
 \[E_{\text{nvPM,corr,hydrogen}} = E_{\text{nvPM}} \times (q_0 + q_H \times \text{Fuel C content} - H_{\text{fuel}}) \]

- Where \(q_0 \) and \(q_H \) are the fitting parameters determined on the same engine variant and \(H_{\text{fuel}} = 14.1\% \). The maximum correction factor was 0.60.

Conclusions
- Only five engines with the same combustor technology and thrust rating could be compared apple to apple
- After the correction for ambient and fuel effects, which were less than 9% and 18%, respectively, the analyzed data indicated increasing emission trends for nvPM mass and number emissions with engine service hours
- Computed LTO emissions increased drastically (356%) for nvPM mass with engine service life (36210 hrs.), while the trend for number emissions was less clear
- Current aircraft emission inventories which are based on type certification data of new engines underestimate real-world nvPM mass emissions due to engine deterioration

Results and Discussion

Quality check: CO2 emissions
- CO2 data indicate a good sampling system performance for all tests
- Idle CO2 increases slightly due to bleed air extraction (which reduces engine core airflow)
- Few data points available for Engine 1-3

Corrected nvPM mass and number emissions
- All engines have the highest mass emissions at the highest fuel flow
- The typical «laying S» curve is observed for the number emissions
- Differences in emissions between engines are particularly observed at higher thrusts
- Differences between Engines 3, 4 and 5 lay within the uncertainty of the measurement (+/-15%)

Implications for the landing and take-off cycle
- Aircraft emissions are regulated for the total emissions in the landing and take-off (LTO) cycle, which assumes; 26 min taxing, 4 min approach, 2.2 min climb-out and 0.7 min take off operations
- The LTO emissions for the new engine were computed based on smoke number correlations (Details can be found in poster #19)

<table>
<thead>
<tr>
<th>Engine</th>
<th>Service Life (hrs)</th>
<th>Total LTO nvPM mass emissions [g]</th>
<th>% Change</th>
<th>% Change in nvPM mass emissions [g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine 1</td>
<td>17355</td>
<td>11.74</td>
<td>+10</td>
<td>9.87×10^{-2}</td>
</tr>
<tr>
<td>Engines 3-5</td>
<td>32000</td>
<td>29.01</td>
<td>+244</td>
<td>1.38×10^{-2}</td>
</tr>
<tr>
<td>Engine 2</td>
<td>36210</td>
<td>42.2</td>
<td>+356</td>
<td>1.58×10^{-2}</td>
</tr>
</tbody>
</table>

- Engine deterioration plays a major role for nvPM mass emissions, while nvPM number emissions are less affected
- An exponential increase in nvPM LTO mass emissions with service live is indicated
- Current aircraft emission inventories therefore underestimate nvPM mass emissions drastically

Acknowledgements: Swiss Federal Office of Civil Aviation FOCA; Engine test cell crew and apprentice workshop of SR Technics AG; Intertek AG Schlieren; Empa co-workers

References: 1Brem et al., Environ Sci Technol 49 (22), 13149-13157. 2015, 2Durdina et al., MMTHCTHCCOCO-6 Environ Sci Technol 49 (22), 13149-13157. 2015, 3Sentyan et al., Environ Sci Technol. 51(6), 3534-3541. 2017

Empa Materials and Science Technology

Contact: benjamin.brem@empa.ch +41 58 765 4332

Liegengäutische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich