

Emission Testing of wood fired stoves or fireplaces

Standards and Test Procedures in Australia/New Zealand, Europe and North America

- Introduction
 Definition, Categories, Impact
- Test Procedures & Standards ,AUS/NZ, Europe, USA/CAN
- Example inset appliance with various tests
- Conclusion

Spartherm Main Site: Melle, Germany

Fireplace Inserts, wood stoves

Definition

Small wood fired appliances:

Common names:

wood stoves, tiled stoves, fireplaces, and many more

Standardisation:

room heaters, inset appliances, inserts, wood heaters, fireplaces

Intended use:

living room heating and decoration

Typical features:

- manually fed with batches of cord wood,
- natural chimney draught,
- manually controlled by user,
- operation without electric power

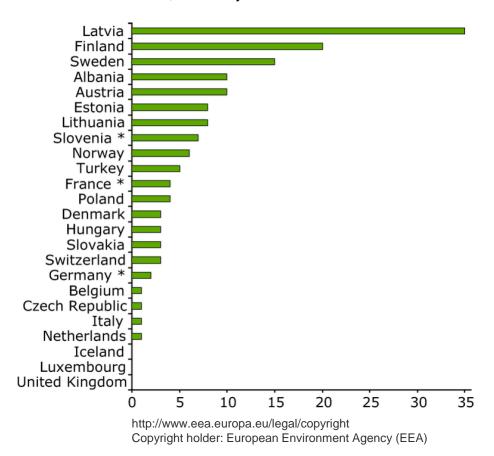
free standing

inbuilt

Table 2-16: Lot 15 appliances sales and stock (2007)

Applia	sales	stock	
indirect heating appliances	manually fuelled boilers	250 400	6 433 000
	automatically fuelled boilers	62 600	1 412 000
direct heating appliances	open fireplaces	850 000	16 000 000
	closed fireplaces / inserts	849 100	16 139 000
	stoves	1 306 700	25 901 000
	cookers	464 200	7 594 000

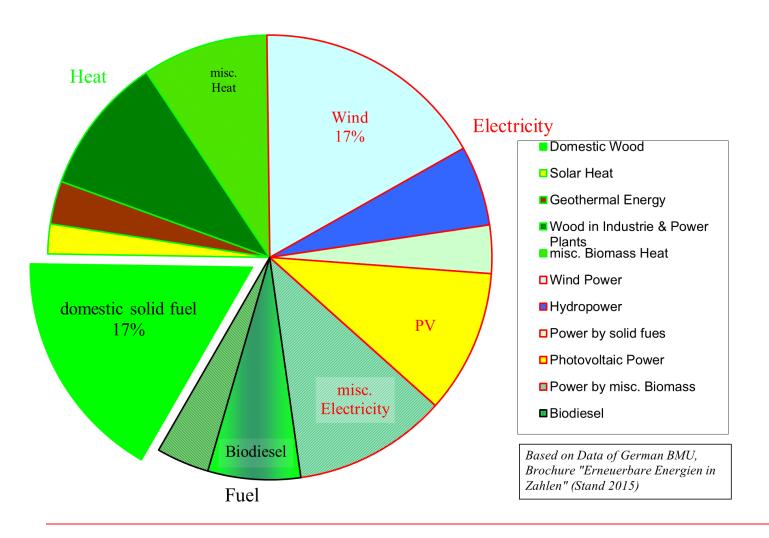
~73 Mio


Ecodesign, Lot 15: Solid fuel small combustion installations, Preparatory Study (2009)

Task 2: Economic and Market Analysis

Contribution of wood energy to total energy consumption, 2005

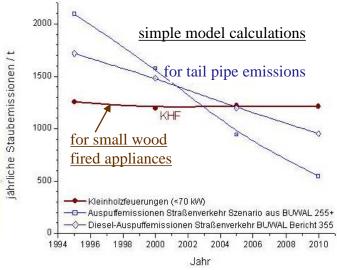
* 2000 values were used for France, Germany and Slovenia



Combustion Generated Nanoparticles, 20. ETH-Conf.

Zürich, 15.6.2016

2014: 336 TWh Renewable Energy in Germany



<u>Problem</u>: Emissions of small wood fired appliances, locally major source of particulates in ambient air

Contributions to cities' ambient particulate matter (PM):
A systematic review of local source contributions at global level (2015) Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Atmospheric Environment, pp. 475-483

Retrospective view

- V. Schmatloch, J.Brenn,
- 4. Kolloquium Klein-Holzfeuerungen 2004
- → Stricter requirements for small wood fired appliances
- → Standardisation work

Requirements or Regulation

national / regional / local based on type tests and upcoming market surveillance Efficiency / Particulates / CO / NOx / OGC

NZ: no general national requirements

requirements in "urban areas" (premises >20ha)

depending on local council (0,5g/kg to 1,5g/kg particulates)

USA: EPA requirements for "wood heaters",

application differs depending on state or county

no requirements for "fireplaces", exemption for decorative or single burn

rate units

EU: general requirements scheduled for 2022

presently different regulations in some member states

UK: no general requirements

Clean Air Act → Smoke Control areas (smokeless fuels or exempt appliances)

D: National requirements on Efficiency, gaseous and particulate emissions,

exemption for "open fireplaces"

CH: National requirements on Efficiency, gaseous and particulate emissions,

exemption for "open fireplaces"

No: National requirements on Particulates, exemption for large appliances

Test Procedures

Basic objectives of type tests

- Fire Safety
- Heating Performance
- Efficiency
- Emissions (CO, PM, NO_x, C_nH_m/OGC/VOC)
- Test of compliance with declared performance and with requirements
 - → Certification

Procedures for

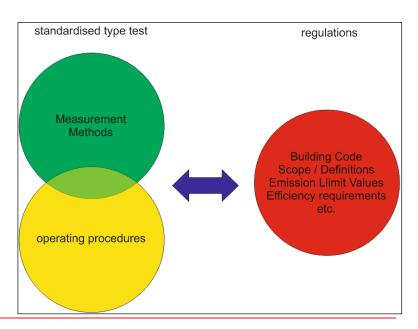
Standardised Characterisation Comparison of different models

at

"realistic" operating conditions

Test Procedures

Measurement method


setup/sampling, principle/technology

Appliance operation

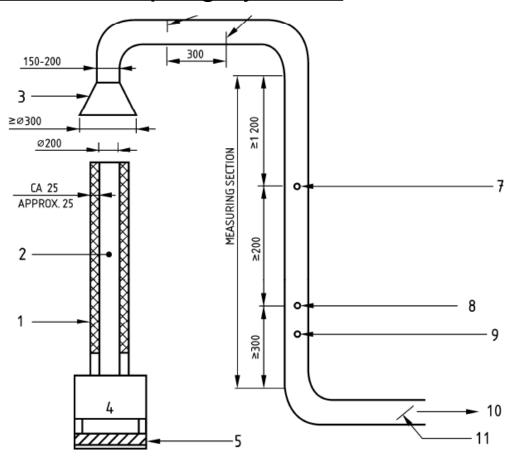
chimney, fuel, loading combustion air, ignition, raking

→ full load / part load or burn rates

Regulation limit values, allowed fuels

Particulate Emissions

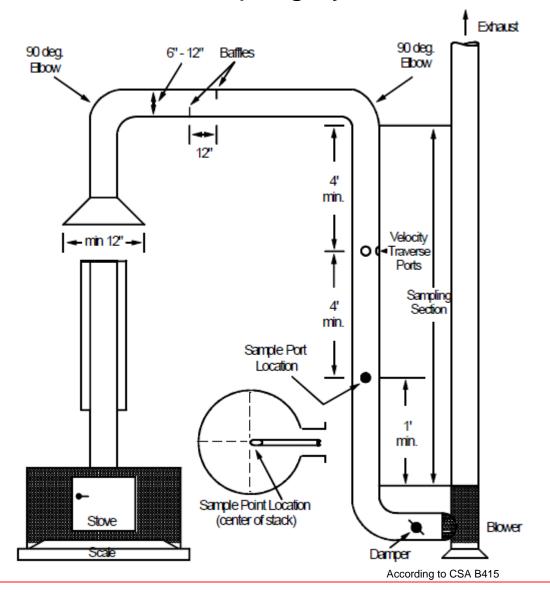
Solid particles and condensibles

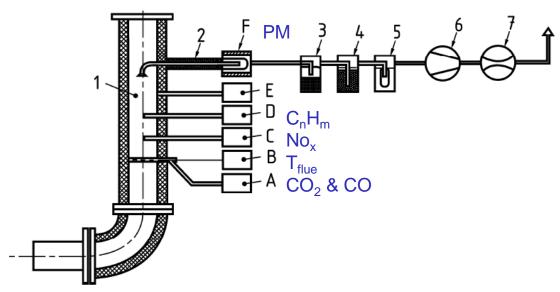

Possible approach

- A) Simulation of chimney conditions,
 - → condensibles for model conditions full flow dilution tunnel
- B) Measurements of flue gas components
 - → solid particles and condensibles separately Heated Filter and FID

General objective:

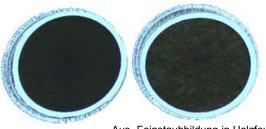
lower type test emissions → reduced ambient air pollution



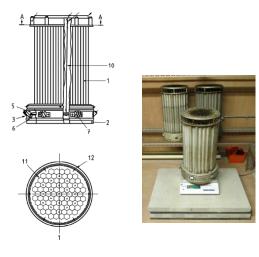

Legende

1	Isolierung	7	Geschwin	digkeitsmessung
2	Schornstein	8	Partikel- und PAK-Messung	
3	Abgastrichter	9	CO- und (CO ₂ -Messung
4	Heizgerät	10	Sonde	
5	Waage	11	Klappe	According to TS15883
6	Verwirbelungsplatten			· ·

Legende


- 1 Messstrecke
- 2 Gas-Probeentnahmesonde und Leitung für die Partikelmessung (wärmeisoliert)
- 3 Wasserabscheider
- 4 Kieselgel-Filter
- 5 Extrafein-Filter
- 6 Pumpe
- 7 Gas-Durchflussmengenmesser
- A CO2- und CO-Messung
- B Abgastemperatur ta-Messung
- C NO_v-Messung
- D C_nH_m-Messung
- E Förderdruck-Messung
- F Partikelfilter (off-line gravimetrische Messung)

According to TS15883


Collection of particulates

Filters, most common material diameter

Aus "Feinstaubbildung in Holzfeuerungen", N.Klippel, T. Nussbaumer, 9. Holzenergie-Symposium 2006

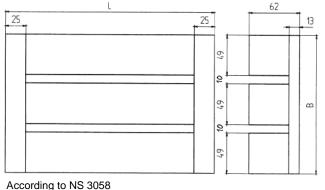
UK alternative methode: ESP

According to TS15883

General approach

- A) Operating conditions fixed by standard
- B) Operation according to user instructions ("intended use")

Various parameters:


- Fuel load mass / position / geometry
- Air setting
- Poking / Raking
- Refueling

Examples for Fuel load – mass and geometry

AUS/NZ: Mass according to Volume as determined by "125mm cube method", $L_f=P_d$ -0.165-V/(1-M/100), premanufactured fuel (octagonal crosssection) piled without fixation

No: Mass according to Volume (112±11)kg/m³ crib wood made of pieces (49mm square crosssection) stitched together with defined with spacers

Examples for Fuel load – mass and geometry

AUS/NZ: Mass according to Volume as determined by "125mm cube method", $L_f=P_d\cdot 0.165\cdot V/(1-M/100)$, premanufactured fuel (octagonal crosssection) piled without fixation

Examples for fuel load – mass and geometry

EN – European standards: cord wood fuel loading according to user instructions

Burn rate / Nominal heat output

 $EPA \; (USA) - four \; given \; burn \; rates \; required \; {\it CATEGORIES} \; (USA) + four \; given \; burn \; rates \; required \; {\it CATEGORIES} \; (USA) + four \; given \; burn \; rates \; required \; {\it CATEGORIES} \; (USA) + four \; given \; burn \; rates \; required \; {\it CATEGORIES} \; (USA) + four \; given \; burn \; rates \; required \; {\it CATEGORIES} \; (USA) + four \; given \; burn \; rates \; required \; {\it CATEGORIES} \; (USA) + four \; given \; burn \; rates \; required \; {\it CATEGORIES} \; (USA) + four \; given \; burn \; rates \; required \; {\it CATEGORIES} \; (USA) + four \; given \; burn \; rates \; required \; {\it CATEGORIES} \; (USA) + four \; given \; burn \; rates \; required \; {\it CATEGORIES} \; (USA) + four \; given \; burn \; rates \; required \; {\it CATEGORIES} \; (USA) + four \; given \; {\it CATEGORIES} \; (USA) + four \; {\it CATEGO$

[Average kg/hr (lb/hr), dry basis)

Category 1	Category 2	Category 3	Category 4
< 0.80	0.80 to 1.25	1.25 to 1.90	Maximum
(< 1.76)	(1.76 to 2.76)	(2.76 to 4.19)	burn rate

According to EPA

NS 3058 (No)

Similar to EPA,

but four burn rates from below 1.25kg/h to >2.80kg/h possible

AUS/NZ: low, medium and high burn rates required

EN - European standards:

Nominal heat output according to user instructions

Standard requirements on minimum burn time → fuel load

Number of tests

AUS/NZ: one valid test for each burn rate

USA/CAN: one valid test for each burn rate

No: one valid test for each burn rate

UK: two burn rates with 5 valid test runs

EN: one burn rate, 2 to 3 vaild test runs

Test Procedures

Overview of selected specifics

	AUS/NZ	EN	No	USA/CAN
Test setup	calor. Room	test stand	test stand	test stand
Sampling	FFDT	HF^1	FFDT	FFDT
Exhaust system	defined chimney	fixed draught	defined chimney	defined chimney
Burn rate	standard	user instr.	standard	standard
# of burn rates	$3(1)^2$	1 4	4 (2) ³	$4(1)^2$
Fuel load	fbV^*	user instr.	fbV^*	fbV^*
Raking/Adjusting	while starting	no	while starting	while starting
Fuel type	constr.	Cord wood	constr.	constr.
Bark	no	yes	no	no

^{1 -} additional OGC measurement optional, 2 - "fixed burn rate units", 3 - large units with restricted air setting

^{4 –} additional part load optional, *-mass of fuel load calculated by volume of firebox

Low Emission Woodburners							
Brand and Model	Emissions (mg/MJ)	Emission Factor (g/kg)	Efficiency (%)	Туре	Water Heater	Authorisation Number	
Spartherm Varia 2L 80h-P7	73.2	0.96	65.9	Built-in	None	168071	
Spartherm Varia 2R 80h-P7	73.2	0.96	65.9	Built-in	None	168072	
Spartherm Varia ASh-P8	72.8	0.99	67	Built-in	None	167168	
Spartherm Varia AS-P8	72.8	0.99	67	Built-in	None	167167	
Spartherm Varia Bh-P7	70.5	0.92	65	Built-in	None	167169	

Excerpt of the "Authorised Solid Fuel Burners" list, Canterbury Regional Council, NZ

Appliance name	Manufacturer	England	Wales	Scotland	Northern Ireland
Spartherm Arte U-50h - P3, Spartherm Arte U-90h - P3 and Spartherm Arte U-70h - P3 insert stoves	Spartherm Feuerungstechnik GmbH, Maschweg 38, D-49324 Melle, Germany	View detailed information	SI 2015 No.1513	View detailed information	SR 2014 No. 294
Spartherm Linear cassette model S 600 P3 inset stove	Spartherm Feuerungstechnik GmbH, Maschweg 38, D-49324 Melle, Germany	View detailed information	SI 2015 No.1513	View detailed information	SR 2014 No. 294
Spartherm Linear Cassette XS500 -P3 insert stove	Spartherm Feuerungstechnik GmbH, Maschweg 38, D-49324 Melle, Germany	View detailed information	SI 2015 No.1513	View detailed information	SR 2014 No. 294
Spartherm Mini 2LRh-4S P3, Spartherm Mini 2L-4S P3, and Spartherm Mini 2R-4S P3 wood-burning inset roomheaters	Spartherm Feuerungstechnik GmbH, Maschweg 38, S-49324 Melle, Germany	View detailed information	SI 2015 No.1513	View detailed information	SR 2014 No. 294
Spartherm Passo S-P3, Spartherm Passo M-P3 and Spartherm Passo L-P3 10kW wood-burning stoves	Spartherm Feuerungstechnik GmbH, Maschweg 38, D-49324 Melle, Germany	View detailed information	No	View detailed information	SR 2015 No. 406
Spartherm Stovo S, M and L Wood burning stoves	Spartherm Feuerungstechnik GmbH, Maschweg 38, D-49324 Melle, Germany	View detailed information	SI 2015 No.1513	View detailed information	SR 2013 No. 292
Spartherm Varia ASh2L - P3, Spartherm Varia ASh2R - P3, Spartherm Varia ASh2L X - P3, and Spartherm Varia ASh2R X - P3 wood-burning inset roomheaters	Spartherm Feuerungstechnik GmbH, Maschweg 38, D-49324 Melle, Germany	View detailed information	SI 2015 No.1513	View detailed information	SR 2014 No. 294
Stovo L-plus – P3 4.7kW wood burning stove	Spartherm Feuerungstechnik GmbH, Maschweg 38, D-49324 Melle, Germany	View detailed information	No	View detailed information	SR 2015 No. 406
Stovo S-plus – P3 4.7kW wood burning stove	Spartherm Feuerungstechnik GmbH, Maschweg 38, D-49324 Melle, Germany	View detailed information	No	View detailed information	SR 2015 No. 406

Excerpt of the list of Exempt Appliances for use in Smoke Control Areas, DEFRA, UK

Overview for one model

Varia 2L / 2R 80h	AUS/NZ	EN	No
Efficiency / %	65.9	80.2	na
Particulate emission / g/kg	0.96 g/kg	na	3.2
Particulate emission / g/h	na	na	10.4
Particulate emission / mg/m ³	na	23,7	na
Particulate emission / mg/MJ	73.2	16	na
Burn rate kg/h	na	na	3.28
NHO kW	11.56-12.93	10.4 / 16.0	na
Test Fuel Load / kg	6.9	4.22*	3.88

^{* - 2} batches

Particulate emissions, four models compared

according to tests results in AUS/NZ, EU, No

	Limit Value	Varia AS	Varia B	Varia 2L80	Varia AFD
ALIC / N.7 a/ka	NZ:0.5/1.0/1.5/(4)	0.99	0.92	0.96	0.96
AUS / NZ g/kg	AUS: 1.5/2.5	(burn rate 2.7kg/h)	(burn rate 3.1kg/h)	(burn rate 4.9kg/h)	(burn rate 4.2kg/h)
EU	40 mg/m ³ foreseen	19 (burn rate 2.7kg/h) ¹	21 (burn rate 3.1kg/h) 1	24 (burn rate 2.8kg/h) ^{1,2}	19 (burn rate 3.5kg/h) ¹
No	10 g/kg	0.93 (burn rate 4.2kg/h)	not tested	3.16 (burn rate 3.3kg/h)	3.48 (burn rate 4.1kg/h)

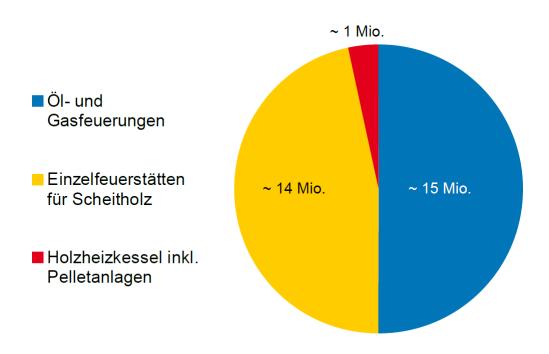
1 – average over 2 burn cycles 2 – at NHO 10.4kW, higher NHO test available

Conclusion

Large Variety of Appliances

Different National situations & habits

 \rightarrow


Different national requirements on emissions Various Test Standards / different concepts

Proposal for Single European Test method: EN PME (see poster 22)

"Real Life not yet standardised"

Thank you for your patience!

Quelle: BMU, Novelle der 1. Bundesimmissionsschutzverordnung (1. BImSchV) Fragen und Antworten, 5/2009

EMISSIONSGRENZWERTE UND VERBRENNUNGSVERBOTE IN DEUTSCHLAND

Tim Froitzheim, Referent Ofen- und Luftheizungsbau, Erneuerbare Energien, KOK 2014

Abgaswerte —	
nogasweree	
	Holz
Abgas Massenstrom [g/s]	9.5
Abgastemperatur [°C]	340
Notwendiger Förderdruck [Pa]	12

http://cert.hki-online.de/geraete

		Jahr			Jahr Veränderung		derung
Kat.	Anlagengruppe	2014	2013	1990	2014/2013	2014/1990	
А	Einzelraumheizungen (A): Anlagenkategorie 1 bis 6	539'039	545'116	537'525	-1.1%	0.3%	
В	Gebäudeheizungen (B): Anlagenkategorie 7 bis 11b	56'175	60'612	152'673	-7.3%	-63.2%	
С	Automatische Feuerungen (C): Anlagenkategorie 12a bis 18	8'192	7'791	2'250	5.1%	264.1%	
D	Spezialfeuerungen (D): Anlagenkategorie 19 und 20	94	93	49	1.1%	91.8%	
Total	Total, alle Anlagenkategorien	603'500	613'612	692'497	-1.6%	-12.9%	
Total	Total ohne KVA (Kat. 20)	603'470	613'582	692'471	-1.6%	-12.9%	

Tabelle 2.1 Veränderung des Anlagenbestandes nach Gruppen

Schweizerische Holzenergiestatistik Erhebung für das Jahr 2014, BFE, Schweiz

Table 2-16: Lot 15 appliances sales and stock (2007)

Applia	sales	stock	
indirect heating appliances	manually fuelled boilers	250 400	6 433 000
	automatically fuelled boilers	62 600	1 412 000
direct heating appliances	open fireplaces	850 000	16 000 000
	closed fireplaces / inserts	849 100	16 139 000
	stoves	1 306 700	25 901 000
	cookers	464 200	7 594 000

Ecodesign, Lot 15: Solid fuel small combustion installations, Preparatory Study (2009)

Task 2: Economic and Market Analysis