Lowering laboratory and real driving particle emissions of direct injection spark ignition engines with n-butanol and isobutanol blends.

Michal Vojtisek-Lom, Vít Beránek, Vojtěch Klír
Faculty of Mechanical Engineering, Czech Technical University in Prague
michal.vojtisek@fs.cvut.cz – (+420) 774 262 854

Jitka Štolcpartová, Jan Topinka
Institute of Experimental Medicine, Academy of Sciences of the Czech Republic

Jaroslav Schwarz, Petr Vodička
Institute of Chemical Processes of the Czech Academy of Sciences

Miroslav Cigánek, Miroslav Machala
Veterinary Research Institute, Brno, Czech Republic
Overview of the study

2013 / EURO 6 Ford Focus car with EcoBoost DISI engine

Gasoline, E15, 25% n-butanol, 25% isobutanol

Chassis dynamometer - NEDC, WLTP, Artemis, US06
HC, CO, NO, NO2, PM, PN (PMP), PN (EEPS),
Unregulated: FTIR, PAH, genotoxicity (DNA adducts, ...)

55-km real driving loop - size distribution (onboard EEPS)
Issues addressed in this study

Particle emissions from DISI engines:
- emissions from production / in-use engines
- effects of driving cycle / off-cycle emissions
 - particles smaller than 23 nm
 - volatile nanoparticles

Real driving emissions and their measurement

WLTP vs. NEDC, Artemis, US06, ..., real driving

Effect of renewable alcohol fuels on particle emissions

Butanol as a potential alternative to ethanol
Project BIOTOX – Mechanisms of Toxicity of Particles from Biofuels
PM measurement and sampling using high-volume samplers
Gasoline MPI and direct injection, diesel, Traditional and alternative fuels (ethanol, butanol, biodiesel, NExBTL, blends)

Laboratory and on-road particle emissions of DISI engines fueled with butanol blends.
Vojtisek-Lom, 19th ETH Conference on Combustion Generated Nanoparticles, June 29, 2015
Real driving emissions measurement
Portable on-board monitoring systems (PEMS)

Cars, buses, trucks, tractors, loaders, mowers, small airplanes, mopeds, ferries, locomotives, construction machinery

Laboratory and on-road particle emissions of DISI engines fueled with butanol blends.
Vojtisek-Lom, 19th ETH Conference on Combustion Generated Nanoparticles, June 29, 2015
“Research PEMS”: On-board FTIR (gaseous compounds), EEPS (size distributions), CPC (particle counts)
Student projects: E85, n-butanol, isobutanol in unmodified gasoline engines in Škoda cars

On-board FTIR

~ 30 kg

~ 300-400 W

3 hours on

26 kg of batteries
(Diesel) ICE exhaust particulate matter

- Small particles (units to hundreds of nm) formed by incomplete combustion of fuel and engine lubricating oil and wear metals
- Complex mixture of compounds, many known to be carcinogenic
- More premature deaths (> 400 K per year in EU) than traffic accidents (< 40 K per year)
- One of the most pressing urban environmental problems

Laboratory and on-road particle emissions of DISI engines fueled with butanol blends.

Spořilov – ambient concentrations of 5-100 nm particles (thousands per cm³) – March 26, 2014

Měření 26.3.2014 10:15:13:45
Koncentrace částic
EEPS 5-100 nm
[tisíce částic/cm³]
Roadside & neighborhood ambient PM
Spořilov, February 2014, average of 40 locations, typical concentrations 10^4-10^5 particles/cm3 (max. 10^6/cm3)

~ 10 nm

~ 30-40 nm

Particle electric mobility diameter [nm]

Mean (error bars - st.dev.)
Geometric mean
Median

Diesel exhaust
Ronkko a kol, EST 2013

Vojtíšek a kol., NanoCon 2014
Is diesel PM becoming more of a question of public policy rather than technology?
Gasoline engine PM: Number vs. Mass limits by driving cycle

WLTP is “not as lame as NEDC”, but does it cover the problem – enrichment at high load (prohibited by EPA)?

US06 and Artemis motorway cycles as a supplement?
Gasoline engine real-driving PM emissions
Gasoline engine on-road PM emissions – steady speed vs. full-power acceleration

Instantaneous fuel consumption

Instantaneous PM emissions

Area of each mark is proportional to the instantaneous PM emissions in mg/s
Laboratory and on-road particle emissions of DISI engines fueled with butanol blends.

Vojtisek-Lom, 19th ETH Conference on Combustion Generated Nanoparticles, June 29, 2015

Effects of E85 on real driving emissions in an ordinary car
14 km test route
(SAE 2013-24-0102)

Škoda Felicia passenger car,
Euro 3 1.4-liter MPI SI engine
3 runs on gasoline
3 runs on E85

Cumulative PM length
Laboratory tests

Vehicle:
2013 Ford Focus, Euro 6
EcoBoost 1.0-liter engine
Direct ignition gasoline

Fuels:
Gasoline (no ethanol),
E15 (15% ethanol)
25% n-butanol
25% isobutanol

Cycles:
Fuel change & adaptation,
WLTP preconditioning,
WLTP cold, WLTP hot,
4 x Artemis
Dilution tunnel instrumentation

- High-volume samplers
- Rotating disc Microdiluter & EEPS
- PMP-compliant particle counter
- Full-flow Dilution tunnel
- Laboratory FTIR
- Portable FTIR

Laboratory and on-road particle emissions of DISI engines fueled with butanol blends.
Vojtisek-Lom, 19th ETH Conference on Combustion Generated Nanoparticles, June 29, 2015
Effect of cycle & effect of “PN” definition:
PN (PMP), PN (EEPS 5-560 nm), PN (EEPS 23-560 nm)
Gasoline, PM is gravimetric on TX40HI20-WW Emfab filters

<table>
<thead>
<tr>
<th>Cycle</th>
<th>PM mass [mg/km]</th>
<th>PN (PMP) [#/km x 10^12]</th>
<th>PN EEPS 24-560 nm</th>
<th>PN EEPS 5-560 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLTP cold</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WLTP hot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEDC hot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art urb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art rur</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Art 130</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fuel effect on HC, CO, NOx, CO2: 4 runs of Artemis cycle

SAE 2015-24-2513 in review
Laboratory and on-road particle emissions of DISI engines fueled with butanol blends.

Vojtisek-Lom, 19th ETH Conference on Combustion Generated Nanoparticles, June 29, 2015

Fuel effect on PM, PN (PMP), PN (EEPS, 24-560 and 5-560 nm)

PM - gravimetric

<table>
<thead>
<tr>
<th>mg/km</th>
<th>PM</th>
<th>Gas E0</th>
<th>E15</th>
<th>nBu25</th>
<th>iBu25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art urb</td>
<td>3.5</td>
<td>3.0</td>
<td>2.5</td>
<td>2.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Art rur</td>
<td>3.0</td>
<td>2.5</td>
<td>2.0</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Art 130</td>
<td>2.5</td>
<td>2.0</td>
<td>1.5</td>
<td>1.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

PN - EEPS 24-560 nm

<table>
<thead>
<tr>
<th>#/km</th>
<th>PN-EEPS > 23 nm</th>
<th>Gas E0</th>
<th>E15</th>
<th>nBu25</th>
<th>iBu25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art urb</td>
<td>6.0E+12</td>
<td>5.0E+12</td>
<td>4.0E+12</td>
<td>3.0E+12</td>
<td>2.0E+12</td>
</tr>
<tr>
<td>Art rur</td>
<td>5.0E+12</td>
<td>4.0E+12</td>
<td>3.0E+12</td>
<td>2.0E+12</td>
<td>1.0E+12</td>
</tr>
<tr>
<td>Art 130</td>
<td>4.0E+12</td>
<td>3.0E+12</td>
<td>2.0E+12</td>
<td>1.0E+12</td>
<td>6.0E+12</td>
</tr>
</tbody>
</table>

PN - PMP

<table>
<thead>
<tr>
<th>#/km</th>
<th>PN (PMP)</th>
<th>Gas E0</th>
<th>E15</th>
<th>nBu25</th>
<th>iBu25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art urb</td>
<td>2.5E+12</td>
<td>2.0E+12</td>
<td>1.5E+12</td>
<td>1.0E+12</td>
<td>6.0E+12</td>
</tr>
<tr>
<td>Art rur</td>
<td>2.0E+12</td>
<td>1.5E+12</td>
<td>1.0E+12</td>
<td>6.0E+12</td>
<td></td>
</tr>
<tr>
<td>Art 130</td>
<td>1.5E+12</td>
<td>1.0E+12</td>
<td>6.0E+12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PN - EEPS 5-560 nm

<table>
<thead>
<tr>
<th>#/km</th>
<th>PN-EEPS 5-560 nm</th>
<th>Gas E0</th>
<th>E15</th>
<th>nBu25</th>
<th>iBu25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art urb</td>
<td>4.5E+13</td>
<td>4.0E+13</td>
<td>3.5E+13</td>
<td>3.0E+13</td>
<td>2.5E+13</td>
</tr>
<tr>
<td>Art rur</td>
<td>4.0E+13</td>
<td>3.5E+13</td>
<td>3.0E+13</td>
<td>2.5E+13</td>
<td>2.0E+13</td>
</tr>
<tr>
<td>Art 130</td>
<td>3.5E+13</td>
<td>3.0E+13</td>
<td>2.5E+13</td>
<td>2.0E+13</td>
<td>1.5E+13</td>
</tr>
</tbody>
</table>

SAE 2015-24-2513 in review
Fuel effect on PM mass – gravimetric and EC
Artemis cycle (4 runs on each fuel)

Gravimetric:
TX40HI20-WW Filters

EC:
Quartz fiber filter
EC/OC split: EUSAAR 2 protocol
"Non-volatile" component of PM and PN
Artemis cycle (4 runs on each fuel)

Are solid particles mostly larger, and volatiles smaller ???
Or artefact ???

"Solid PM" fraction: EC (from EC/OC)

total PM mass

"Solid PN" fraction: PN-PMP

EEPS 24-560 nm
no volatile removal
Effects of fuel on *normalized* size distribution

Normalized size distributions mostly similar among fuels
Effects of fuel on polyaromatic hydrocarbons (PAH)
Artemis cycle, all parts, all runs

![Bar Chart]

- Extractable organic matter (ug/km)
- Sum of PAHs (ng/km)
- Sum of 16 US EPA PAHs (ng/km)
- Sum 7 cPAH (ng/km)
Effects of fuel on polyaromatic hydrocarbons (PAH)

Artemis cycle, all parts, all runs

Emissions of 7 carcinogenic PAH [ng/km]

- Benz[a]anthracene
- Chrysene
- Benzo[b]fluoranthene
- Benzo[k]fluoranthene
- Benzo[a]pyrene
- Indeno[1,2,3-cd]pyrene
- Benzo[ghi]perylene

Gasoline, E15, nBu25, iBu25
Toxicity assays: Ongoing, will report later
On-board instrumentation – EEPS, mini-PEMS, batteries

Rotating disc microdiluter, (150 C, DR 300:1) sampling from the tailpipe -> EEPS (5-560 nm, 1 Hz)
On-board monitoring system “Mini-PEMS” (13 kg)

Response approximately proportional to PM mass concentrations for a given engine

Nephelometer (laser scattering)

Sample cool & reheat

Filtered dilution air

10-12 lpm raw exhaust

Before or after DOC, DPF, ...

Condensate and large particle removal

Modified ionization smoke alarm (a 100 EUR system) - response proportional to total particle length (close to lung deposited surface area?)

Filter, flow control, pump

Charge meter

F-FC-P

NDIR-HC,CO,CO2

chem.cell NO

F-FC-P

NDIR-HC,CO,CO2

chem.cell NO

Engine

outflow

On-board monitoring system “Mini-PEMS” (13 kg)

Response approximately proportional to PM mass concentrations for a given engine

Nephelometer (laser scattering)

Sample cool & reheat

Filtered dilution air

10-12 lpm raw exhaust

Before or after DOC, DPF, ...

Condensate and large particle removal

Modified ionization smoke alarm (a 100 EUR system) - response proportional to total particle length (close to lung deposited surface area?)

Filter, flow control, pump

Charge meter

F-FC-P

NDIR-HC,CO,CO2

chem.cell NO

F-FC-P

NDIR-HC,CO,CO2

chem.cell NO

Engine

outflow
Test route

55 km, 1-hour
2 times on each fuel

Preconditioning:
(Artemis or 1 run) + 6 km
Instantaneous PN emissions along the test route
Laboratory and on-road particle emissions of DISI engines fueled with butanol blends.

Vojtisek-Lom, 19th ETH Conference on Combustion Generated Nanoparticles, June 29, 2015
Laboratory and on-road particle emissions of DISI engines fueled with butanol blends.

Vojtisek-Lom, 19th ETH Conference on Combustion Generated Nanoparticles, June 29, 2015
PN as a function of engine power

Mass air flow used as a surrogate of fuel flow (stoichiometric operation), fuel flow as a surrogate of engine power

EEPS-based particle mass
concentration [mg/m³]

engine mass air flow [g/s]

Gas-2
Gas-3
E15-1
E15-2
nBu-1
nBu-2
iBu-1
iBu-2
PN as a function of road speed and engine power

PN emissions are dominated by full-power accelerations – notably for gasoline, less for E15, and much less for both butanols.
Summary

Particle emissions from DISI engines
- emissions from production / in-use engines -- MEASURED
- effects of driving cycle / off-cycle emissions – investigated & found
- particles smaller than 23 nm – found, about half of 5-560 nm total count
- volatile nanoparticles – found, large part of total PN
- non-regulated compounds – PAH measured, toxicity tests ongoing

Real driving emissions and their measurement
– onboard mini-PEMS and EEPS (onboard FTIR to be done later)
 – PM and PN emissions dominated by high power operation

Effect of butanol on particle emissions
While E15 did not produce consistent PN or PM reduction, both 25% n-butanol and 25% isobutanol reduced elemental carbon (EC), particle number emissions per PMP, and 7 US EPA priority carcinogenic polyaromatic hydrocarbons by roughly one half, with no increase in NOx or other demonstrated problem.
Warning: This engine may produce nanoparticles that are harmful when inhaled.

Laboratory and on-road particle emissions of DISI engines fueled with butanol blends.

Vojtisek-Lom, 19th ETH Conference on Combustion Generated Nanoparticles, June 29, 2015

Czech Science Foundation project BIOTOX (13-0148S): Mechanisms of toxicity of particles from biofuels

EU LIFE+ program, project MEDETOX - Innovative Methods of Monitoring of Diesel Engine Exhaust Toxicity in Real Urban Traffic (LIFE10 ENV/CZ/651)

European Social Fund, CZ.1.07/2.3.00/30.0034 Support of Research Teams at Czech Technical University in Prague.

Thank you!