Arianna Trentini
ARPA, Italy
“Comparison Nucleation Events in Rural and Urban Sites in Po Valley, Italy”
Realization of an integrated study of atmospheric pollution in Emilia-Romagna region by chemical, physical and toxicological measures and health, epidemiological and environmental evaluation by interpretative models.

www.supersito-er.it

Promoters
Regional Health Policy Department
Regional Environmental and Sustainable Development Department
Coordination
Regional Agency for Prevention and Environment of Emilia-Romagna

Institutes involved:
Institute of Atmospheric Sciences and Climate (CNR-ISAC)
University of Bologna
University of Ferrara
University of Eastern Finland
Finnish Meteorological Institute
Department of Epidemiology of the Regional Health Service (Lazio)
University of Insubria
Monitoring sites
The Po Valley (northern Italy) is characterized by a high density of anthropogenic emissions (mainly are traffic, domestic heating, industry emissions and agriculture) and by frequent exceedance of PM limits set by the EU Air Quality Directive (2008/50/CE) due to, especially in the cold season, the frequent inversion and stagnation meteorological conditions.

Urban site: about 400,000 residents (1,000,000 metropolitan area)
Rural site: about 1,500 residents
The distance between two sites is about 30 Km.
Measurements period: February, March, April, May, June, July, September, October 2013

Sampling site: urban background in the city of Bologna, inside the area of National Research Council
rural area

Farms and open country
Instrumentation
SCANNING MOBILITY PARTICLE SIZER
&
Twin- DIFFERENTIAL MOBILITY PARTICLE SIZER

Long and Nano-DMA (TSI 3081, TSI 3085) & (Hauke-type, Winklmayr et al., 1991)

WCPCs (CPCs TSI 3787, TSI 3788) & Butanol CPCs (TSI 302; TSI 3010)

DIFFERENTIAL MOBILITY
ANALYZER –DMA +
CONDENSATION PARTICLE
COUNTER-CPC

Radioactive source: Kr 85 & Ni-63
Nano: 3-20 nm
Long: 15-600 nm
148 & 119 channels
Time resolution: 5 min & 10 min
Descriptive analysis
Descriptive analysis 1

Average 3-600nm: 9496 cm-3 urban and 6121 cm-3 rural
Madrid 7300-9900 cm-3; London ~12000 cm-3; Milan ~ 26000 cm-3
(Moreno et al., 2011 – Atmos. Env.) (Rodriguez et al., 2007 – Atmos. Env.)

The contribution of ultrafine particles (UFP, 3-100 nm) to TPC (Total Particle Concentration) levels were respectively 82% for urban site and 78% for rural site. in agreement with data reported for other urban areas with a comparable meteorological features:
Modena 78% (10-700nm; Bigi et al., 2011 – Water Soil Pollut.)
Milano 79% (10-20000nm; Lonati et al., 2011 – Atmos. Env.)

Correlation between urban and rural site
> 100nm 0.751 corr >100nm vs PM2.5 → 0.835/0.857
< 100nm 0.209 corr PM2.5 urban vs rural: 0.932 (daily db)
Descriptive analysis 2: monthly average 2013

Typical season influence: maximum values in winter period, with atmospheric stagnant conditions, same as the other pollutants

Not seasonal trend, an increase in rural site during warm period

* few days
Descriptive analysis 3: monthly average 2013

3-10 nm more NPF in rural site

10-30 nm more traffic in urban site

A. Trentini - 19th ETH Conference on Combustion Generated Nanoparticles

* few days
Descriptive analysis 3: diurnal pattern

Cold period

Rush hour peak: vehicle exhaust emissions (as primary gaseous)

Warm period

Probably new particle formation

Particle Number Concentration (cm⁻³)

- Urban
- Rural

- 3-10nm
- 10-30nm
- 30-50nm
- 50-80nm
- 80-100nm
- 100-600nm

Traffic particles, residential heating and long-range transported secondary components
Analysis of Nucleation Events
Percentage of Event, Undefined and Non-Event

Classification events by Hamed et al., 2005 - Atmos. Chem. Phys.

Hyytiala: 24%
(Dal Maso et al., 2005 – Boreal Env. Res.)

Madrid 17% rural
(Moreno et al., 2011 – Atmos. Env.)

Hong Kong (winter): 23%
(Wang et al., 2014 – Atmos. Env)

Beijing (summer): 15-20%
(Yue et al., 2009 – J. of Geophysical Res.)

Ultrafine particle event without growth into larger particles and/or 'spot' primary emissions (traffic, industry, residential heating...)

15% in the same days (deleting Bad&Nodata)
Diurnal pattern

Event days and non-Event days
Particle Number Concentration

Not winter in urban site due to limited Event days

PM2.5

urban site

Events
Non Events

urban rural
µg/m³

0 5 10 15 20
0 2 4 6 8 10 12 14 16 18 20 22 24
PNC (cm⁻³)
time(UTC+1)

0 5000 10000 15000 20000
0 2 4 6 8 10 12 14 16 18 20 22 24
PNC (cm⁻³)
time(UTC+1)

Spring

Autumn

urban site

Events
Non Events

urban rural
µg/m³

0 5 10 15 20
0 2 4 6 8 10 12 14 16 18 20 22 24
PNC (cm⁻³)
time(UTC+1)

0 5000 10000 15000 20000
0 2 4 6 8 10 12 14 16 18 20 22 24
PNC (cm⁻³)
time(UTC+1)
Relative humidity

For rural site:
- Winter
- Spring
- Summer
- Autumn

For urban site:
- Spring
- Summer
- Autumn

Lines represent:
- Red: Events
- Blue: Non Events
3 case studies
Event days, non-Event days
and Event in the same day
April 2013 – Event in a rural site

Similar meteo conditions, just a stronger advection in rural site in the first morning hours.

---

- 3-10nm
- 10-30nm
- 25-90nm
- 90-600 nm
July 2013 – Event in a urban site

Different relative humidity and wind speed in the first morning hours.
May 2013 – Event in both sites

Similar relative humidity and radiation; high wind speed before both Events

- 3-10nm
- 10-30nm
- 25-90nm
- 90-600 nm
CS_j = 2π D_j Σ_i β_{ij} d_{pi} N_i

(Cond Sinks by Lehtinen K.E.J. Et al., 2003; Kuuluvainen H. et al., 2010)
In summary

Photochemistry enables New Particle Formation in a polluted area of PO valley either in the rural site and in urban background site.

Three case studies: the wind velocity is the meteorological factor that seems to have more influence on the NPF.

In this study I found that in order to have a NPF Event, the solar radiation and relative humidity play a fundamental role.

Most events that occurred in the urban site also occurred in the rural site.

For this study there are no information for precursors (still a work in progress)
Thank you for your attention!

Arianna Trentini
atrentini@arpa.emr.it

Collaborators
Dimitri Bacco, Fabiana Scotto, Vanes Poluzzi, Isabella Ricciardelli, Silvia Ferrari, Claudio Maccone
(Arpa of Emilia-Romagna – Italy)

Jorma Joutsensaari, Ari Laaksonen
(University of Eastern Finland)

Leone Tarozzi
(Italian National Research Council - Institute of Atmospheric Sciences and Climate – Italy)