Influence of in-cylinder soot formation and oxidation on engine-out soot emission in operation with 1st and 2nd generation biofuels

Wolfgang Mühlbauer, Roman Petsch, Christian Zöllner, Sebastian Lorenz, Dieter Brüggemann
Bayreuth Engine Research Center (BERC), Department of Engineering Thermodynamics and Transport Processes (LTTT), Universität Bayreuth, 95447 Bayreuth, Germany, LTTT@uni-bayreuth.de

MOTIVATION

Challenges for developers of future diesel engines:
1. Reduction of particulate matter (PM) – nitrogen oxide (NOx) trade-off [1,2]
2. Replacement of fossil fuel [3,4]

Potential solutions:
1. Alternative combustion concepts, HCCI (at best, P0 = λMax)
2. Biofuels (1st and 2nd generation)

→ Development of biogenic fuels gives further degree to achieve HCCI operation mode

Target of the experiments:
Analyzing in-cylinder soot formation and oxidation process as well as engine-out soot emissions of a 1st and 2nd generation biogenic fuel in comparison to a reference diesel fuel

DIESEL FUELS
Summary of physical and chemical fuel properties

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Density at 15 °C [kg/dm³]</th>
<th>Cetane number</th>
<th>Lower heating value [MJ/kg]</th>
<th>High heating value [MJ/kg]</th>
<th>Surface tension at 30 °C [mN/m]</th>
<th>Oxygen / Sulphur content [weight %]</th>
<th>Initial / Final boiling point [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference diesel fuel (B0)</td>
<td>824</td>
<td>53</td>
<td>42.5</td>
<td>46.1</td>
<td>2.2</td>
<td>28.6</td>
<td>0 / < 5</td>
</tr>
<tr>
<td>Rapeseed oil methyl ester (RME, B100)</td>
<td>860</td>
<td>53</td>
<td>37.5</td>
<td>41.0</td>
<td>3.5</td>
<td>31.0</td>
<td>11 / < 5</td>
</tr>
<tr>
<td>Di-n-butyl ether (DNBE)</td>
<td>787</td>
<td>100</td>
<td>38.0</td>
<td>42.5</td>
<td>0.5</td>
<td>23.1</td>
<td>12 / < 5</td>
</tr>
</tbody>
</table>

RESULTS

• Analyzing the in-cylinder soot formation and oxidation process by simultaneous imaging of OH* and soot

 ▪ Reference diesel fuel (B0):
 - B0: p0 = 1.05 bar, ρ0 = 300 bar
 - B0: p0 = 1.05 bar, ρ0 = 1000 bar
 - B100: p0 = 1.05 bar, ρ0 = 300 bar
 ▪ Rapeseed oil methyl ester (B100)
 - B100: p0 = 1.05 bar, ρ0 = 1000 bar
 ▪ Di-n-butyl ether (DNBE)
 - DNBE: ρ0 = 1.05 bar, ρ0 = 300 bar
 - DNBE: ρ0 = 1.05 bar, ρ0 = 1000 bar

CONCLUSIONS

• Analyzing in-cylinder soot formation and oxidation process of 1st and 2nd generation biofuels by optical measurement techniques.
• Examining engine-out particle size distribution by a SMPS.
• New 2nd generation biofuels (e.g. DNBE) for soot free in-cylinder combustion.
• New 2nd generation biofuels support to achieve HCCI.
• Reduction of raw PM emissions during in-cylinder combustion.

FUTURE WORK

• Further engine operating points (injection, boost pressure, start of injection exhaust gas recirculation).
• Further fuels (synthetic, 2nd generation).
• Optical measurement technique for local temperature and soot fraction determination.
• Optical examination of fuel injection and mixture formation.

Acknowledgements
The research project is funded by the German Ministry of Food, Agriculture and Consumer Protection (BMELV) through its Agency for Renewable Resources (Parthenon Nachwachsende Rohstoffe e.V.) and the Association for Combustion Engines e.V. (Forschungsgemeinschaft Verbrennungsmotoren e.V. – FVV).

References