¹⁴C-based Source Apportionment of Carbonaceous Aerosols in Switzerland for 2008 – 2012

S. Szidat¹, P. Zotter², Y. Zhang¹, I. El-Haddad², L. Wacker³, A. Piazzalunga⁴, P. Fermo⁴, U. Baltensperger², A.S.H. Prévôt²

> ¹Department of Chemistry and Biochemistry, University of Bern, Switzerland ²Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland ³Laboratory of Ion Beam Physics, Swiss Federal Institute of Technology, Zürich, Switzerland ⁴University of Milano, Department of Environmental Science, Italy

peter.zotter@psi.ch

UNIVERSITÄT BERN

OESCHGER CENTRE CLIMATE CHANGE RESEARCH

Radiocarbon in the environment

 $u^{\scriptscriptstyle b}$

b UNIVERSITÄT BERN OESCHGER CENTRE CLIMATE CHANGE RESEARC

2

Carbonaceous aerosols & radiocarbon

b UNIVERSITÄT BERN OESCHGER CENTRE CLIMATE CHANGE RESEARI

Modern ¹⁴C level

Depleted in ¹⁴C

Thermo-optical control of OC/EC separation

Separation goals for ¹⁴C(EC) :

- 1. Complete OC removal
- 2. Negligible charring
- 3. High EC recovery

New protocol Swiss_4S

- Oxygen-based
- Related to EUSAAR-2
- Water-extracted filters

 $u^{\scriptscriptstyle \flat}$

b UNIVERSITÄT BERN OESCHGER CENTRI CLIMATE CHANGE RE

EC isolation: Four steps using water-extracted filters

PAUL SCHERRER INSTITUT

¹⁴C analysis: accelerator mass spectrometry

Synal, 2013 Szidat et al., 2014

 $u^{\scriptscriptstyle b}$

6 UNIVERSITÄT BERN OESCHGER CENTRE CLIMATE CHANGE RESEAF ¹⁴C Project Switzerland

- Focus: winter-smog-episode days (PM10 > 50 μg/m³)
- 5 days per station and year for 2008 2013

- → <u>640¹⁴C measurements</u>
- → One of the world's largest ^{14}C dataset in aerosol research

 u^{b}

b UNIVERSITÄT BERN OESCHGER CENTRE CLIMATE CHANGE RES

• OC is mostly non-fossil (~70% to ~95%)

• Traffic contribution to OC max. 30%

- EC_{NF}/EC : 40% 50% for most stations
- Wood burning almost as important as traffic
- EC_{NF} "extreme" values in Schächental (80%) and San Vittore (87%)

PAUL SCHERRER INSTITUT

¹⁴C data & other wood-burning markers

OC_{NF} vs. levoglucosan

- High correlation
- Small intercept
- → Major fraction of OC_{NF} from wood burning

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN OESCHGER CENTRE CLIMATE CHANGE RESE

OC_{NF} vs. potassium (K⁺)

- Clearly different ratios for stations north and south of the Alps
- ightarrow More OC emitted in the south
- → Larger fraction of highly efficient wood burners (e.g. Pellet burners) in the north

Fossil fraction of EC

- No trend for most of the stations
- Decreases in Chiasso: ~65% to ~56%
- Decrease in Massongex: ~49% to ~43%

- Bern:
 - 2009-2013: from ~74% up to ~83%
 - But 2013 ~6% less fossil than 1999

Fossil fraction of EC

- No trend for most of the stations
- Decreases in Chiasso: ~65% to ~56%
- Decrease in Massongex: ~49% to ~43%
- Bern:
 - 2009-2013: from ~74% up to ~83%
 - but 2013 ~6% less fossil than 1999
- Decrease in Zürich: ~66% to 59%

Clear relationship between temperature and EC_{NF}

• Higher non-fossil contributions with lower temperatures

 \rightarrow More wood-burning due to more residential heating

- Yearly cycle at the urban background station in Zürich
- August 2008 July 2009; 2 3 filters per month

Summary

UNIVERSITÄT BERN OESCHGER CENTRE CLIMATE CHANGE RESEARCH

- OC_{NF} on average 70% 95% with slightly higher values south of the Alps
- EC_{NF} on average 19% 66% with extreme values in Alpine valleys up to 87%
- Wood burning is the major source of carbonaceous aerosols in Switzerland during winter smog episodes
- Larger fraction of highly efficient wood burners north of the Alps
- Clear yearly cycle for EC_{NF} in Zürich, but no seasonal variability for OC_{NF}

Thank you for your attention

This work was funded by:

the Swiss Federal Office for the Environment, inNet Monitoring AG, Liechtenstein and the Swiss cantons Basel-Stadt, Basel-Landschaft, Graubünden, Solothurn, Valais and Ticino

- Low spectral dependence of the b_{abs} from traffic ($\alpha_{TR} \sim 1$)
- Enhanced *babs* for wood burning in the near ultraviolet
- α_{TR} and α_{WB} have to be assumed a priori

UNIVERSITÄT BERN OSSCHIGER CENTRE CLUMATE CHANGE RESEA

- ^{14}C results of EC used as reference to find "best" $\alpha\text{-values}$
- Both methods correlate well (r = 0.79)

• α_{WB} = 1.4–1.7 (lowest 1st and highest 3rd quartile) for α_{TR} = 0.9–1.1

- Collect sample <u>continuously</u>.
- *Optical absorption* ~ change in ATN.
- Measure optical absorption <u>continuously</u> : $\lambda = 370$ to 950 nm.
- Convert *optical absorption* to *concentration of BC:*
 - $BC(t) = b_{abs}(t) / \sigma$

PAUL SCHERRER INSTITUT ¹⁴C vs. Aethalometer

<u>Aethalometer</u>

• measures light absorption (λ = 370, 470, 520, 590, 660, 880 and 950 nm) form which the equivalent BC concentration can be deduced

Traffic emissions:

- contain mainly BC
- dominate absorption at IR-wavelengths
- exhibit only a weak wavelength dependence

Wood burning emissions:

- contain a significant number of light absorbing organic substances
- have an enhanced absorption in the UV range
- exhibit a strong wavelength dependence
- $b_{abs}(\lambda) \sim \lambda^{-\alpha}$ a ... Ångstrom Exponent
- $b_{abs}(\lambda) = b_{absTR}(\lambda) + b_{absWB}(\lambda)$

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN OESCHGER CENTR