Analysis of Large PAH as Components and Precursors of Nano/Ulrafine Carbon Particulate Matter

The predominant contribution of organic carbon to the nano-ultrafine particles (<100nm), mainly coming from combustion sources, has been established (1-2). The chemical complexity of organic carbon, mostly constituted of aromatic species, requires sophisticated techniques for detecting and identifying their chemical composition.

Large polycyclic aromatic hydrocarbons (L-PAH), defined as aromatic species with aromatic core of at least 24 carbon atoms (3), are the common thread linking small volatile PAH and carbon nanoparticles formation occurring during some phases of the combustion process or in the case of failure of the combustion system. Indeed, L-PAH constitute a class of species which can be separated from the carbon particulate matter through extraction/chromatography. L-PAH are also individuated as main structural moieties linked each other by single bonds and bridges in the bulk of carbon particles. This suggests their possible role as precursors of nano-ultrafine particles formation.

In previous work structural insights on the L-PAH fraction of carbon particulate matter have been obtained by size exclusion chromatography (SEC) coupled with UV-Visible absorption.

In this work the characteristics of L-PAH produced from fuel-rich combustion, namely sooting premixed flames, have been studied by their SEC separation from carbon particulate matter and detailed analysis with spectroscopic tools. The study of the properties of L-PAH formed in sooting premixed flames has been made easy from referring to pitch samples, almost totally composed of L-PAH in a quite similar mass range and with similar H/C atomic ratio (~0.5).

Flame Sampling of carbon particulate matter

Atmospheric-pressure fuel-rich premixed laminar flames (see Table) were produced on a commercial N/Kerna burners (Hitachi & Associates, Sendai, CA). Carbon particulate matter was caught by thermophoretic deposition on quartz plates inserted at early residence times in the flames of different fuels.

Separation of Large PAH from deposited carbon particulate matter

L-PAH adsorbed on the deposited carbon particulate matter were separated from the solid carbon (dry soot) by sublimation in Dichloromethane (DCM) and recovered for the spectroscopic (UV-visible) and chromatographic (SEC) characterization. The UV-visible spectrum in the 190-250 nm wavelength range of the L-PAH were obtained by difference between the spectra measured on the quartz plate before and after the DCM extraction.

UV-visible spectra of the DCM-soluble fraction have been also measured in standard 1-cm pathlength quartz cells. The UV absorption of DCM limited the spectra acquisition of the DCM-soluble fraction to the 250-1100 nm wavelength detection range.

Size Exclusion Chromatography (SEC)

The SEC was equipped with a Dino Array Detector able to measure on-line UV-Visible spectra of the MW-segregated fractions from 2000u to 5000u. The frequency of spectra acquisition was about 2.5 Hz.

MW distribution and UV-Vis spectra of Large PAH in flame-formed carbon particulate matter

MW distribution and spectra obtained by SEC of adsorbed PAH

From the UV-Vis spectra (S1, S2 and S3) measured for each MW-segregated fraction the optical band gap, Eg, was evaluated by using the Tauc calculations (4). Also the maximum absorption positions was evaluated by applying a reconstruction procedure previously developed (5).

The shift of the maximum absorption position toward the UV region of the S2 spectrum and the broad shape of the UV spectrum, typical of polymeric aromatic materials (6), suggest that the 500-2000u species (P2 peak) are composed of small clusters/aggregates (dimers, trimers) of the 200-500u PAH units connected by sp2 carbon bonding (7).

Reconstruction of UV-Vis spectra

These results appear to be consistent with the aromatic H/C ratio measurements, showing that the higher is the H/C ratio (0.3-0.4 for Methane and Ethylene, 0.2 for Benzene) the lower is the wavelength of the maximum in the UV-visible spectrum.

MW distribution and UV-Vis spectra of Large PAH in Naphthalene Pitch (NP)

Quantitative FT-IR measurements on NP (8) showed significant amount of aliphatic hydrocarbons mainly located in CH3 groups. Assuming a degree of CH3 edge hydrogenation of 0.3, the H/C atomic ratio evaluated for the aromatic part of NP was compatible with the UV-Vis results.

The decoupling (9) of NP UV-Vis spectra measured on the MW-segregated fractions showed that all aromatic moieties constituted L-PAH up to few tens of rings arranged into structures having molecular weight up to 1.65u. Molecules like Ovalene (C93H133 ~298) or Hexabenzocoronene (C60H ~525u) stacked into two or three layers shift their absorption ultraviolet-maximum from about 220nm to about 190nm as the CH3 edge hydrogenation increases (10).