Secondary organic aerosol formation from small scale wood stoves

Can it be reduced by application of catalytic VOC converters?

Simone Pieber¹ – emissions measurements
Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, Villigen
simone.pieber@psi.ch, 0041 056 310 4467

Anastasios Kampolis² – catalyst development
Paul Scherrer Institute, Bioenergy and Catalysis Laboratory, Villigen
anastasios.kampolis@psi.ch, 0041 056 310 5321

Emily Bruns¹, Imad El Haddad¹, Dogushan Kilic¹, Davide Ferri², Oliver Kröcher²,³, Urs Baltensperger¹ and André S.H. Prévôt¹

¹ Laboratory of Atmospheric Chemistry, Paul Scherrer Institute
² Bioenergy and Catalysis Laboratory, Paul Scherrer Institute
³ École Polytechnique Fédérale de Lausanne
Residential log wood combustion

- common heating method
- black carbon, primary organic aerosol (POA)
- gasphase hydrocarbons
- significant formation of secondary organic aerosol (SOA)

Average organic components in Winter from various sites in central Europe

(Heintzenberg et al., 2003)

(Lanz et al., ACP., 2010)
GASPHASE EMISSIONS

average exhaust composition
- CO\(_2\) up to 10,000 ppm
- CO up to 5000 ppm
- CH\(_4\) up to 500 ppm
- H\(_2\)O up to 8 vol.%
- NMHC up to 1000 ppmC

NMHC fraction can be dominated by (polycyclic) aromatic hydrocarbons

⇒ deleterious health effects
⇒ increased formation of secondary organic aerosol in atmospheric aging

![Chemical structures and reactions](attachment:image.png)
SECONDARY ORGANIC AEROSOL

POA and BC can be reduced by optimization of the oven design, especially during the flaming period and operating conditions.

After-treatment options:

- needs (catalytic) reduction of precursors (NMHC)
- could be reduced with mechanical methods

(Heringa et al., ACP, 2011)
Efficient catalyst for oxidation of CH₄ and NMHC at low temperature

Pt / Al₂O₃ and Pt / x%CeO₂-Al₂O₃

- powder (model gas, H₂O stability)
- coated monolith
 - model gas vs. real wood burning exhaust
 - effect on NMHC & secondary organic aerosol

Al₂O₃
- great mechanical properties
- high surface area - porosity
- water resistant

Pt
- high activity for CO and HC
- fair stability against poisoning
- H₂PtCl₆ left overs may prevent poisoning by inorganic compounds

CeO₂
- high oxygen storage capacity (OSC)
- improves dispersion of supported metal: smaller metal clusters, more active centers in metal-support interface
- enhances catalyst's thermal stability
EXPERIMENTAL SET-UP

Catalyst in powder form

Bioenergy and Catalysis Laboratory, PSI

Catalyst coated on monolith

Bioenergy and Catalysis Laboratory, PSI

fixed-bed reactor

reaction feed: 20% O₂, 1000 ppm CH₄, balance N₂,
F = 100 mL min⁻¹, GHSV = 118 L g⁻¹ h⁻¹

coating on ceramic monolith

reaction feed:

Lab: 10% O₂, 1000 ppm CH₄,
4.7% H₂O, balance N₂,
F = 8 L min⁻¹, GHSV = 180 L g⁻¹ h⁻¹

Wood Burning Exhaust, F = 6 L min⁻¹

(Kampolis et al., in prep.)
EXPERIMENTAL SET-UP

Catalyst coated on monolith – tested with wood burning emissions

Laboratory of Atmospheric Chemistry, PSI

- **Proton transfer reaction mass spectrometer** (HR-PTR-ToF-MS)
 - Volatile organic compounds, degree of aging (OH exposure)
- **Flame Ionisation Detector**
 - CH₄, NMHC, THC
- **Cavity Ring Down Spectrometer**
 - CO₂, CO, CH₄, H₂O
- **Aerosol mass spectrometer** (HR-ToF-AMS)
 - Non-refractory PM quantification, chemical composition,
- **Aethalometers**
 - Black carbon (soot) quantification

- **Potential Aerosol Mass (PAM) Chamber** to simulate secondary organic aerosol formation
 - (Kang et al., ACP, 2007 and Lambe et al, AMT, 2010)

CO₂: 3500 – 11000 ppm
CO: 350 – 1100 ppm
CH₄: 70 – 280 ppm
NMHC: 150 – 500 ppm
H₂O: ca. 1%
NOₓ: ppm
POA₁: ~500 ug m⁻³
BC: ~20 000 ug m⁻³

- **Catalyst coated in glass reactor**
 - T = 100 – 600°C
 - F = 6 L min⁻¹

- **Heated Ejection Dilutor** ~1:8, 150°C

- **3 m³ Teflon Chamber**
RESULTS
CH₄ conversion with powder in lab reactor

Cat A: Pt/30%CeO₂-Al₂O₃ // POWDER
- Pt/10%CeO₂-Al₂O₃ - pretreated with H₂
- Pt/20%CeO₂-Al₂O₃ - pretreated with H₂
- Pt/30%CeO₂-Al₂O₃ - pretreated with H₂

Cat B: Pt/Al₂O₃ // POWDER
- Pt/Al₂O₃ - pretreated with H₂
- Pt/Al₂O₃ - pretreated with N₂

50% conversion

430°C

500°C

Pt/30%CeO₂-Al₂O₃

(Kampolis et al., in prep.)
CH$_4$ conversion with coated monoliths in lab reactor

Bioenergy and Catalysis
Laboratory, PSI

- Coated Pt/30%CeO$_2$-Al$_2$O$_3$ monolith more efficient for CH$_4$
- T for 50% CH$_4$ conv. for monolith is 600°C vs. 430°C for powder
CH₄ conversion with monolith: lab test vs. WB exhaust

Laboratory of Atmospheric Chemistry, PSI

- Cat A: Pt/30%CeO₂-Al₂O₃
 - CH₄ (Lab Test)
 - CH₄ (Exp. 3, 7, 9)

- Cat B: Pt/Al₂O₃
 - CH₄ (Lab Test)
 - CH₄ (Exp. 5)

- Coated Pt/30%CeO₂-Al₂O₃ monolith more efficient for CH₄

- Wood burning exhaust (F = 6 L min⁻¹) very comparable to lab test (F = 8 L min⁻¹)

Graph Details:
- X-axis: Set Temperature [°C]
- Y-axis: CH₄ conversion
- Data points for lab test and WB exhaust at different temperatures.
CO and NMHC conversion with monolith: WB exhaust

Laboratory of Atmospheric Chemistry, PSI

- for CO and NMHC lower T than for CH₄
- CO and NMHC conv. with 30%CeO₂ needs further investigation

Cat A: Pt/30%CeO₂-Al₂O₃
- CH₄ (Lab Test)
- CH₄ (Exp. 3, 7, 9)
- CO (Exp. 3, 7, 9)
- NMHC (Exp. 3, 7, 9)
- CO₂ (Exp. 3, 7, 9)

Cat B: Pt/Al₂O₃
- CH₄ (Lab Test)
- CH₄ (Exp. 5)
- CO (Exp. 5)
- NMHC (Exp. 5)
- CO₂ (Exp. 5)
Aromatic HC conversion with monolith: WB exhaust

Laboratory of Atmospheric Chemistry, PSI

Conversion vs. Set Temperature [°C]

- [Benzene + H]^+ (m/z 79)
- [Toluene + H]^+ (m/z 93)
- [Styrene + H]^+ (m/z 105)
- [Naphthalene + H]^+ (m/z 129)
- [Benzaldehyde + H]^+, [Xylenes + H]^+ (m/z 107)

Cat B: Pt/Al₂O₃

CO (Exp. 5)
NMHC (Exp. 5)
Benzene (mz79)
Toluene (mz93)
Styrene (mz105)
Benzaldehyde / Xylene (mz107)
Naphthalene (mz129)

Preliminary!
Aromatic HC conversion with monolith: WB exhaust

Cat B: Pt/Al₂O₃

- CO (Exp. 5)
- NMHC (Exp. 5)
- Benzene (m/z 79)
- Toluene (m/z 93)
- Styrene (m/z 105)
- Benzaldehyde / Xylene (m/z 107)
- Naphthalene (m/z 129)

Conversion from start value

Set Temperature [°C]

- [Benzaldehyde + H]^+ (m/z 107)
- [Styrene + H]^+ (m/z 105)
- [Benzene + H]^+ (m/z 79)
- [Toluene + H]^+ (m/z 93)
- [Naphthalene + H]^+ (m/z 129)
Secondary organic aerosol formation w/wo catalyst

Estimated Reduction:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>NMHC</th>
<th>SOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>310°C</td>
<td>-52%</td>
<td>-96%</td>
</tr>
<tr>
<td>250°C</td>
<td>-18%</td>
<td>-86%</td>
</tr>
<tr>
<td>185°C</td>
<td>-7%</td>
<td>-60%</td>
</tr>
</tbody>
</table>

- Conversion of aromatics?
- Adsorption of high molecular weight compounds to catalyst surface area?
CONCLUSIONS

- Tested catalysts work very well for CH$_4$ conversion in lab test and with wood burning exhaust, light off temperature should be further reduced.

- Low conversion temperatures for CO and NMHC, unclear why CeO$_2$ did not increase the catalyst efficiency for this conversion.

- Aromatic hydrocarbons (important SOA precursors) removed already at low catalyst temperatures (e.g. burner start up)

- SOA formation can be potentially reduced by a large proportion – requires further analysis of gasphase HC species

- Open questions:
 - Stability to H$_2$O and in long term?
 - Effect on primary PM
 - Stability > 600°C
 - Alternatives to Pt based catalysts, especially for NMHC conversion?
THANK YOU FOR YOUR ATTENTION!

Secondary organic aerosol formation from small scale wood stoves

Can it be reduced by application of catalytic VOC converters?

Simone Pieber – emissions measurements
Paul Scherrer Institute,
Laboratory of Atmospheric Chemistry, Villigen
simone.pieber@psi.ch, 0041 056 310 4467

Anastasios Kampolis – catalyst development
Paul Scherrer Institute,
Bioenergy and Catalysis Laboratory, Villigen
anastasios.kampolis@psi.ch, 0041 056 310 5321

Acknowledgements

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 290605 (PSI-FELLOW), from the Competence Center Environment and Sustainability (OPTIWARES) and from the Swiss National Science Foundation (WOOSHI).

We thank René Richter, Felix Klein and Maarten Heringa for their contribution to the work presented in this presentation.
BACK UP SLIDES
SECONDARY ORGANIC AEROSOL

(Heringa et al., 2011, SOA formation in smog chamber)
CATALYTIC SYSTEMS

Why this material?
Pt/Al$_2$O$_3$ ("Cat B") and Pt/x%CeO$_2$-Al$_2$O$_3$ ("Cat A")

Al$_2$O$_3$
- widely used in catalysis
- great mechanical properties
- high surface area - porosity
- water resistant

Pt
- high activity for combustion of CO and HC
- fair stability against poisoning

CeO$_2$
- high oxygen storage capacity (OSC)
- improves dispersion of supported metal: smaller metal clusters, more active centers in metal-support interface
- enhances catalysts thermal stability

Preparation
Pt/Al$_2$O$_3$ ("Cat B") and Pt/x%CeO$_2$-Al$_2$O$_3$ ("Cat A")

Powder
Pt
- wet impregnation (WI) of H$_2$PtCl$_6$ on the commercial γ-Al$_2$O$_3$ support (200 um), Pt content: 1.3 wt%
- drying at 90 °C overnight, calcination at 500 °C (50 °C/min) for 2h

substrate pretreatment for Pt/x%CeO$_2$-Al$_2$O$_3$
- deposition-precipitation (DP) of Ce(NO$_3$)$_3$·6H$_2$O on commercial γ-Al$_2$O$_3$, x= 10, 20, 30 wt%
- drying at 90 °C overnight, calcination at 500 °C (50 °C/min) for 2h

Monolith
- ceramic monoliths of appropriate size
- aluminum-based binder (γ-Al$_2$O$_3$, 5-10 um)
- calcination at 500 °C in air for 2 h, hydrothermal aging at 600 °C for 6h, using 10% H$_2$O/N$_2$
Potential Aerosol Mass (PAM) Chamber (Kang et al., ACP, 2007 and Lambe et al, AMT, 2010)

Continuous Flow Reactor, Residence time ca 2 min,
main oxidants O₃, OH, HO₂

O₃ source: - photolysis of O₂
OH source: - photo-dissociation of O₃, reaction of O(¹D) + H₂O;
- photolysis of H₂O

Photochemical age can be varied,
e.g. UV intensity and H₂O (g)
(OH up to 400 pptv (~10¹³ molecules / cm³), O₃ up to 15 ppmv)

![Diagram of PAM Chamber](image)

Mercury Lamps in Teflon Tubing
Screen
Instruments

- **Sample Flow**: 1 L min⁻¹ humidified N₂
- **Exhaust**: ca. 20 cm
- **N₂ Purge Flow**: 0.5 L min⁻¹ N₂
- **“Ring Flow” to pump**: 1 L min⁻¹
- **“Ring Flow”**: ca. 40 cm
- **Water**: mQ Water
- **Screen**: Nafion membrane

UVC lights, λ = 185 and 254 nm

12 L PAM Chamber

BET and Porosity of Pt/xCeO$_2$-Al$_2$O$_3$ catalysts

- Textural characteristics: unaffected by CeO$_2$
- Mesoporous structure

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>BET (m2/g)</th>
<th>Pore volume (cm3/g)</th>
<th>Pore size (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt(W)Al</td>
<td>209</td>
<td>0.519</td>
<td>66.0</td>
</tr>
<tr>
<td>Pt(W)10CeAl(DP)</td>
<td>205</td>
<td>0.499</td>
<td>78.6</td>
</tr>
<tr>
<td>Pt(W)20CeAl(DP)</td>
<td>216</td>
<td>0.490</td>
<td>78.3</td>
</tr>
<tr>
<td>Pt(W)30CeAl(DP)</td>
<td>199</td>
<td>0.459</td>
<td>78.7</td>
</tr>
</tbody>
</table>