Inlet gas temperature of 323 K, atmospheric pressure, cold gas velocity of 8 cm/s

Ethylene/oxygen/argon flame (C/O = 0.7) and stepwise addition of ethanol: 5% Ethanol in ethylene/ethanol flames with different equivalence ratio \(\phi = 2.3 \)

Flame temperatures are similar independent of ethanol content

With increasing ethanol content shift of PSDs to smaller diameters for HAB = 12 mm; bimodal (C/O = 0.7, unimodal)

Effect mainly due to fuel structure?

Results for ethylene/ethanol flames with constant \(\phi = 2.3 \)

Reduction of soot volume with increasing ethanol content in the fuel

Already 5% of ethanol in the fuel have a significant influence on the soot formation

Tendency of soot reduction induced by ethanol addition increases at lower equivalence ratios

Acknowledgements

The authors gratefully acknowledge the financial support by the Federal Ministry of Food and Agriculture in the project “Bildung von Rußpartikeln und katalytische Filterreinigung bei der motorischen Nutzung von Ottokraftstoffen aus Biomasse” (project number 22041111).

References:

[1] The McKenna Flat Flame Burner, Holthus & Associates, P.O. Box 1531, Sebastopol, CA 95473.

Results for ethylene/ethanol flames with constant C/O ratio = 0.7

Addition of ethanol to the fuel leads to a reduction of the soot formation

For constant equivalence ratio the PSDFs are bimodal in pure ethylene flames and in flames with an ethanol content of < 50%, for HAB = 12 mm; for 50% ethanol content the PSDFs become unimodal

The tendency of the reduction of soot formation due to the addition of ethanol is more distinct at low equivalence ratios

For constant C/O ratio soot formation is increasing with higher amounts of ethanol in the fuel due to the fact that the equivalence ratio increases

However, the PSDFs in the flame with 20% ethanol and the pure ethylene flame are quite similar; what leads to the assumption that mainly the fuel structure influences the soot formation

Experimental setup

Oil-cooled flat flame model burner (McKenna burner [1]) with bronze plug (Ø 60 mm) and N2 - shroud

Stabilization plate at HAB = 30 mm

Fluid supply via Bronkhorst MFCs (\(\Delta \phi = 0.03 \))

Direct evaporator for liquid fuel (type aSTEAM from aDROP GmbH)

Mixing of fuel and oxidizer via special mixing chamber

Conditioning of reactants at 323 K after evaporating the liquid fuel at higher temperature

Sample probe (\(\lambda_2O_2 > 99.5\% \), 9 mm ID, 10 mm OD) with \(\phi = 0.3 \) mm orifice

Dilution ratio \(\sim 2 \times 10^4 \) (uncertainty \(\sim 24\% \))

Type 5 thermocouple (Ø 0.5 mm, \(\Delta T = 80 \) K) for temperature measurement

Results for ethylene/ethanol flames with constant \(\phi = 2.2/2.3/2.4 \)

Addition of soot volume with increasing ethanol content in the fuel

Already 5% of ethanol in the fuel have a significant influence on the soot formation

Tendency of soot reduction induced by ethanol addition increases at lower equivalence ratios

Figure 10. Soot volume fractions of ethylene/ethanol flames as function of ethanol percentage at constant C/O ratio (C/O = 0.7) at four different HABs.

Figure 9. Variation of PSD in ethylene/ethanol flames at constant C/O ratio (C/O = 0.7) at HAB = 6 mm and HAB = 12 mm

Figure 8. Radiation-corrected axial flame temperature profiles in ethylene/ethanol flames at constant C/O ratio (C/O = 0.7)

Figure 7. Pictures of ethylene/ethanol flames with different ethanol percentage at constant C/O ratio (C/O = 0.7)

Figure 6. Soot volume fractions of ethylene/ethanol flames normalized with soot volume fractions of pure ethylene flames as function of ethanol percentage at constant C/O ratio (C/O = 0.7) at HAB = 10 mm

Figure 5. Comparison between similar PSDs in ethylene/ethanol flames with 5% and 10% ethanol percentage at constant equivalence ratio (\(\phi = 3.3 \)) at four different HABs

Figure 4. Variation of PSD's in ethylene/ethanol flames at constant equivalence ratio (\(\phi = 2.3 \)) at HAB=6 mm and HAB = 12 mm

Figure 3. Radiation-corrected axial flame temperature profiles in ethylene/ethanol flames at constant equivalence ratio (\(\phi = 2.3 \))

Figure 2. Pictures of ethylene/ethanol flames with different ethanol percentage at constant equivalence ratio (\(\phi = 2.3 \))

Figure 1. Schematic of experimental setup (similar to [2])

Investigated ethylene/ethanol flames

Two series of tests:

- Ethylene/oxygen/argon flame (C2H4/O2/Ar = 0.139:0.181:0.880) at \(\phi = 2.3 \) = const. (C/O = 0.77) and stepwise addition of ethanol: 5% - 50% of total carbon feed
- Ethylene/oxygen/argon flame (C2H4/O2/Ar = 0.128:0.183:0.689) at C/O = 0.7 = const. (\(\phi = 2.3 \)) and stepwise addition of ethanol: 5% - 30% of total carbon feed
- Inlet gas temperature of 323 K, atmospheric pressure, cold gas velocity of 8 cm/s (at 273 K and 1 atm)

Internal probe sampling with suitable gas conditioning and online analysis using a Scanning Mobility Particle Sizer (SMPS)

Aim

- Study on influence of ethanol on soot formation in selected fuel-rich atmospheric pressure laminar premixed ethylene oxygen/argon flames
- Study on influence of residence time (height above the burner HAB) on equivalence ratio \(\phi \) and C/O ratios on Particle Size Distribution Functions (PSDFs)
- Internal probe sampling with suitable gas conditioning and online analysis using a Scanning Mobility Particle Sizer (SMPS)

1 TU Bergakademie Freiberg, Institute of Thermal Engineering, Freiberg, Germany

2 Karlsruhe Institute of Technology, Engler-Bunte-Institute, Division of Combustion Technology, Karlsruhe, Germany