Results of numerous studies, \textit{in vitro} and \textit{in vivo}, have revealed that engineered nanomaterials (ENM) can induce significant toxicity. However, because most of these studies were designed using very high doses/concentrations, their usefulness for risk assessment purposes can be questioned. The sole reliance on dose–response data falls short of enabling a comprehensive safety assessment of ENM. With respect to inhalation as the route of exposure, the availability of exposure–dose–response data based on a subchronic or chronic rodent inhalation study would be an appropriate basis for quantitative risk assessment. A case study in rats of 3 month inhalation exposures to multiwalled carbon nanotubes (MWCNT) is briefly discussed to illustrate how both hazard and risk characterization can be derived from such subchronic study. Ideally, a minimum of three exposure concentrations plus sham-exposed controls should be used, with detailed characterization of the aerosol and including measurement of biokinetic data. Essential for a comparative approach would be the availability of results from subchronic inhalation of positive and negative control materials against which the materials to be tested can be ranked. Also, expressing results by different dose metrics such as particle mass, surface area, volume, or number, can provide important information about potential underlying mechanisms. Analyzing dose-response relationships with respect to hazard ranking could be done by identifying the steepest slope of the dose–response relationship (Rushton \textit{et al.}, 2010). For risk characterization, the exposure–dose–response relationship can be analyzed by using a benchmark dose approach (BMD, Davis \textit{et al.}, 2011) in order to derive an associated benchmark concentration (BMC) as a safe exposure level. Results derived from the rodent study will be the basis for an extrapolation of risk to human exposure scenarios, provided species differences in respiratory tract dosimetry are considered. This concept will be illustrated using two subchronic inhalation studies in rats with MWCNT (Ma-Hock \textit{et al.}, 2009; Pauluhn, 2010). Results of previously published subchronic inhalation studies with negative reference particles (carbon black, nano-TiO\textsubscript{2} and micro-TiO\textsubscript{2}) and positive reference particles (crystalline silica, Ni\textsubscript{3}S\textsubscript{2}, both known human carcinogens inducing significant acute and chronic adverse effects) were selected for comparison. Using different dose metrics for hazard characterization showed that the retained particle surface area as well as the retained particle volume at the end of the 3-month rat inhalation studies appeared to be the best metrics to rank the MWCNT against the reference particles. Hazard groupings of low, medium and high could be established, with MWCNT ranking in the medium group. With respect to deriving a BMC for subchronic exposures of rats, it turned out that carbon black, as the more benign particle type, required a much higher exposure concentration than the tested MWCNT to reach the benchmark response (BMR), whereas Ni\textsubscript{3}S\textsubscript{2} needed only to be inhaled at a very low concentration to reach its BMR at the 3-month timepoint. In order to extrapolate the rat to a human equivalent concentration (HEC), dosimetric extrapolation with rat-specific and human-specific particle deposition models should finally be carried out.

Can a similar approach be used to derive a “safe” exposure concentration for ambient ultrafine particles (UFP)? Although engineered nanomaterials and ambient ultrafine particles are of the same size
category, there are still significant differences in terms of chemistry and surface properties between ENM (purposefully designed by well-controlled processes) and ambient UFP (generated by numerous anthropogenic combustion sources which generate also gaseous compounds; and generated by non-anthropogenic gas-to-particle conversions in the ambient atmosphere). Even “clean” natural gas fueled power plants emit ultrafine particles at high concentrations, similar to oil and coal-fired power plants (Chang et al., 2004). A most often discussed source of ambient UFP is exhaust from traditional diesel engines because of its toxic nature; with the introduction of very efficient filtration devices to retain UFP, the new technology diesel engines are extremely clean with respect to particle emissions (Mayer et al., 2008; Hesterberg et al., 2012). However, despite the efficient removal of exhaust UFP and of chemical constituents, and despite the absence of epidemiological studies or long-term animal inhalation studies for an in depth risk assessment of new technology diesel exhaust, the International Agency for Research on Cancer (IARC, 2012) in its recent carcinogen evaluation meeting determined that there is sufficient evidence in humans for carcinogenicity of diesel engine exhaust as a cause for lung cancer – including the new technology diesel. IARC classifications are solely based on a hazard potential rather than on a risk analysis which most likely would not be significant due to the very low particle emissions of new technology diesel exhaust. On the issue of establishing an ambient ultrafine particle standard, EPA in its most recent proposed rule regarding a national ambient air quality standard for particulate matter gave no indication that a standard for UFP is being considered (EPA, 2012). EPA proposed, though, to lower the annual health standard for PM$_{2.5}$ and set a separate standard to improve visibility for a 24-hr. standard, but otherwise retained the 24-hr. standard for coarse particles and existing secondary standards for PM$_{2.5}$ and PM$_{10}$.

When considering an ultrafine particle standard, the question how to derive a standard needs to be discussed. Studies at Rochester (unpublished) have shown that ambient UFP-bound reactive oxygen species (ROS) vary widely from day-to-day and within a given day. Of interest, there was no consistent correlation between number of ambient UFP and the ROS activity associated with these particles. It appears that episodic nucleation processes, including gas-to-particle conversions which are not necessarily seasonally restricted, may play a role. In separate studies using engineered nanoparticles it was found that the ROS-inducing potential of these nanoparticles correlated well with acute in vivo responses (Rushton et al., 2010); if such correlation can also be established for ambient UFP, measurement of UFP-bound ROS could be a simple means to predict the in vivo reactivity of UFP in exposed humans and compare it to other well characterized materials. For example, Zhao and Hopke (2012) compared the ROS inducing capacity of the particulate phase and the gaseous phase of cigarettes with those of ROS bound to particles in urban settings. They suggested to express urban particulate exposure in terms of ROS equivalency of cigarette smoke and presented examples of wide variations of cigarette equivalencies of particulate air pollution among different cities world-wide.

With respect to establishing a general ambient ultrafine particle standard, one could consider to base this on a specific dosemetric for expressing the intrinsic UFP bound ROS activity. However, a general UFP standard (targeting all UFP) based on any dosemetric does not make sense because of the enormous differences in UFP chemistry from different specific sources (controllable anthropogenic, uncontrollable natural) which cause significant differences in toxicity. Therefore, a UFP standard should best be source-specific and should be based on the number concentration of emitted UFP, including also the smaller UFP down to <10 nm. A suggested strategy is to identify those sources which emit the most reactive UFP, which could be based on the measurement of particle-bound ROS as an initial screening tool. It would then be justifiable to regulate these most reactive sources rather than ambient UFP.
immissions by introducing an emission number standard. Such standard could be derived according to a risk assessment concept as discussed at the beginning of this presentation. Obviously, co-pollutants (particulate, gaseous) have to be considered as well. For toxicology, this will involve source-specific hazard identification and ranking which could be based on validated in vitro approaches, complemented by a source-specific risk characterization based on in vivo rodent inhalation assays. Obviously, availability of results of epidemiological studies from exposures to specific UFP sources would be most suitable for a human risk assessment.

REFERENCES:

Session 5b: Health Effects

Safety Evaluation of Engineered Nanoparticles: Relevant for Ambient ultrafine Particles?

Günter Oberdörster
University of Rochester

27 June 2012
A Case Study:
Risk Assessment Based on Subchronic (3 months) Rodent Inhalation Study

• subchronic multi-concentration inhalation studies with MWCNT in rats
 - important: aerosol characteristics; biokinetics (lung burden); post exposure period
• use results of “positive” and “negative” reference materials
• select sensitive endpoints of response (quantitative best)
• establish Exposure – Dose - Response correlations
• express by different dosemetrics (particle-mass, -surface area, -volume, -number)
• evaluate results to establish:
 - hazard ranking against pos. and neg. control, by different dosemetrics
 - subchronic no effect level for rat: NOAEL; BMD/BMR/BMC
• estimate chronic no effect level (based on accumulated lung burden)
• use dosimetric extrapolation to estimate HEC (Human Equivalent Concentration)
Two Subchronic MWCNT Inhalation Studies in Rats

Inhalation Toxicity of Multiwall Carbon Nanotubes in Rats Exposed for 3 Months

Lan Ma-Hock,* Silke Treumann,* Volker Strauss,* Sandra Brill,* Frederic Luizi,† Michael Mertler,‡ Karin Wiench,* Armin O. Gamer,* Bennard van Ravenzwaay,*1 and Robert Landsiedel*

*Product Safety, BASF SE, 67056 Ludwigshafen, Germany; †Nanocyl S. A., 5060 Sambreville, Belgium; and ‡Process Engineering, BASF SE, 67056 Ludwigshafen, Germany

TOXICOLOGICAL SCIENCES 112(2), 468–481 (2009)

Subchronic 13-Week Inhalation Exposure of Rats to Multiwalled Carbon Nanotubes: Toxic Effects Are Determined by Density of Agglomerate Structures, Not Fibrillar Structures

Jürgen Pauluhn

Department of Inhalation Toxicology, Institute of Toxicology, Bayer Schering Pharma, Building Number 514, 42096 Wuppertal, Germany

TOXICOLOGICAL SCIENCES 113(1), 226–242 (2010)
90 - Day Inhalation, Male Rats: MWCNT
Percent Increase of Lung Weight Above Controls
As Function of Exposure Concentration

- MWCNT (Pauluhn 2010)
- MWCNT (MaHock et al 2009)
Comparing MWCNT results with 5 other subchronic rat inhalation studies:

- ultrafine carbon black
- nano TiO$_2$
- micro TiO$_2$
- cristalline silica
- nickel subsulfide

Reference materials:
- negative
- positive
90-Day Inhalation, Male Rats: MWCNT, SiO₂, Ni₃S₂, TiO₂

Percent Increase of Lung Weight Above Controls As Function of Retained Particle Surface Area

- MWCNT (Pauluhn 2010)
- MWCNT (MaHock et al 2009)
- Carbon Black (Elder, et al, 2005)
- Ni₃S₂ (Oberdörster, unpub.data)
- SiO₂ (Crist)
- Micro TiO₂

Graph showing lung weight increase as a function of retained particle surface area.
90 - Day Inhalation, Male Rats: MWCNT, SiO₂, Ni₃S₂, TiO₂

Percent Increase of Lung Weight Above Controls
As Function of Retained Lung Burden (Volume)
(based on bulk density)

- MWCNT (Pauluhn, 2010)
- MWCNT (MaHock et al, 2009)
- Carbon Black (Elder, et al, 2005)
- Ni₃S₂ (Oberdörster, unpub.data)
- SiO₂ (Crist)
- nano TiO₂ (Oberdörster, et al, 1994)
- micro TiO₂

Carbon Black 77%
@ 32,440 nl →
nano TiO₂ 16%
@ 40,000 nl →
Hazard Ranking of Different (Nano)-Materials Based on Different Metrics and Steepest Slope of Exposure-Dose-Response Relationships from Subchronic Rat Inhalation Studies (endpoint: lungweight increase)

<table>
<thead>
<tr>
<th>Metric</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure Conc.</td>
<td>microTiO_2 < nanoTiO_2 < CB < MWCNT-P < MWCNT-MH = SiO_2 < Ni_3S_2</td>
</tr>
<tr>
<td>Retained Lung Burden:</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>microTiO_2 < nanoTiO_2 < CB < SiO_2 = MWCNT-P = MWCNT-MH < Ni_3S_2</td>
</tr>
<tr>
<td>Surface area:</td>
<td>CB < nanoTiO_2 = microTiO_2 < MWCNT-P = MWCNT-MH < SiO_2 < Ni_3S_2</td>
</tr>
<tr>
<td>Volume (bulk dens):</td>
<td>microTiO_2 = nanoTiO_2 < CB < MWCNT-MH = MWCNT-P < SiO_2 < Ni_3S_2</td>
</tr>
<tr>
<td>Volume (mat. dens):</td>
<td>microTiO_2 < nanoTiO_2 < CB < SiO_2 = MWCNT-P = MWCNT-MH < Ni_3S_2</td>
</tr>
</tbody>
</table>
Three Hazard Groupings (based on BET surface area):

Low: \(CB; TiO_2 \rightarrow < 0.3 \% \) lungwt. incr./cm\(^2\)

Medium: \(MWCNT \rightarrow 0.3 – 1 \% \) lungwt. incr./cm\(^2\)

High: \(SiO_2; Ni_3S_2 \rightarrow >1 \% \) lungwt. incr./cm\(^2\)
Rat subchronic exposure concentration to reach BMD-L based on increase in lungweight:

Carbon black: 3700 – 5700 µg/m³
MWCNT: 140 – 250 µg/m³
Ni₃S₂: 30 – 35 µg/m³
NEXT STEPS

Specific:
Dosimetric extrapolation of rat to human BMC-L to obtain human equivalent concentration (HEC)

Dosimetric extrapolation of subchronic BMC-L to chronic BMC-L
Powerplants: Ultrafine Particle Size Distribution at 10, 20, 30 and 50 X Dilution Air Ratios (Exhaust temp. 450°K; residence time 80 sec) (Chang et al., 2003)

COAL

OIL

NATURAL GAS
Evaluation:

Sufficient evidence in humans for carcinogenicity: Group 1
- as cause for lung cancer: sufficient evidence
- positive association (limited evidence) for increased risk of bladder cancer

GASOLINE ENGINE EXHAUST: Possibly carcinogenic to humans: Group 2B

New Technology Diesel Exhaust: While the amount of particles and chemicals are reduced with these changes, it is not yet clear how the quantitative and qualitative changes may translate into altered health effects; research into this question is needed.
Evaluation:

Sufficient evidence in humans for carcinogenicity: Group 1
- as cause for lung cancer: sufficient evidence
- positive association (limited evidence) for increased risk of bladder cancer

GASOLINE ENGINE EXHAUST: Possibly carcinogenic to humans: Group 2B

New Technology Diesel Exhaust: While the amount of particles and chemicals are reduced with these changes, it is not yet clear how the quantitative and qualitative changes may translate into altered health effects; research into this question is needed.
SUMMARY:

• Strengthen annual health standard for fine particles, PM$_{2.5}$: within range 12-13 µg/m3 (current: 15 µg/m3)

• Retain existing 24-hr. fine standard at 35 µg/m3

• Set separate standard to improve visibility for 24 hr. standard (30 deciviews or 28 deciviews)

• Retain existing secondary standards for PM$_{2.5}$ and PM$_{10}$ identical to primary standards (protecting against ecological effects, effects on materials and climate impacts)

• Retain existing 24 hr. standard for coarse particles (150 µg/m3)
Ultrafine Particle Concentrator output, FMPS Data (June 3, 2008)
Particle bound ROS:

ROS Activity/cubic meter

Winter (Dec., Jan., Feb.)
Spring (Mar., Apr., May)
Summer (Jun., Jul., Aug.)
Fall (Sep., Oct., Nov.)
Particle bound ROS:

ROS Activity/microgram

Winter (Dec., Jan., Feb.)
Spring (Mar., Apr., May)
Summer (Jun., Jul., Aug.)
Fall (Sep., Oct., Nov.)
Animal Studies: May 14 - June 25, 2008

- **ROS Outside - BKG corrected**
- **Outside Air conc.**

Particles

Equivalent H$_2$O$_2$ conc., μM

Data shows fluctuations in ROS levels and outside air concentration over the period from May 14 to June 25, 2008.
CONCLUSIONS

• ROS activity/m3 of ambient UFP can vary widely
 (sources; seasonal; Episodes of natural UFP [gas to particle conversions]?)

• ROS activity of ambient UFP does not always parallel their
 number or mass concentration (chem. composition?)

• ROS activity of lab-generated UFP (nanoparticles) seems to
 reasonably well predict acute in vivo responses (chronic exposure?)
 for ambient UFP: correlation still to be established.
Cigarette gas-phase ROS and particle-phase ROS partitioning ratio

From: Zhao and Hopke, 2012
Particle-bound ROS concentrations measured in previous studies

<table>
<thead>
<tr>
<th>Source location and type</th>
<th>ROS concentration (nmol H₂O₂/m³-air)</th>
<th>Inhaled ROS (nmol/h)</th>
<th>Mainstream smoke (h)</th>
<th>Sidestream smoke (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taipei (Taiwan) sidewalk</td>
<td>0.54</td>
<td>0.19</td>
<td>720</td>
<td>355</td>
</tr>
<tr>
<td>Singapore (Singapore) ambient</td>
<td>5.71</td>
<td>2.06</td>
<td>68</td>
<td>34</td>
</tr>
<tr>
<td>Singapore (Singapore) traffic</td>
<td>15.10</td>
<td>5.44</td>
<td>26</td>
<td>13</td>
</tr>
<tr>
<td>Rubidoux, CA (USA) ambient</td>
<td>5.89</td>
<td>2.12</td>
<td>66</td>
<td>33</td>
</tr>
<tr>
<td>Flushing, NY (USA) ambient</td>
<td>0.87</td>
<td>0.31</td>
<td>447</td>
<td>220</td>
</tr>
<tr>
<td>Rochester, NY (USA) ambient</td>
<td>8.30</td>
<td>2.99</td>
<td>47</td>
<td>23</td>
</tr>
</tbody>
</table>

Continuous exposure for 2-3 days to urban air is equivalent to smoking one Marlboro (red).
Under heavy traffic conditions (Singapore traffic) it is only a one day exposure.

From: Zhao and Hopke, 2012
Ambient UFP Standard:

Physico-chemical properties of UFP are different from different sources:

- Elemental carbon
- Organic carbon compounds
- Inorganics (metals)
- Coagulation
- Surface properties
- Solubility
- Volatility

\[\text{UFP source A} \neq \text{UFP source B} \implies \text{different biol./toxicol. effects} \]
Discussion points:

Given the day-to-day variation in ultrafine particle levels and exogenous ROS activity:

• *Does it make sense to consider an ambient UFP standard based on daily particle mass, or number concentration, or particle ROS activity?*
UFP Standard

Which Dosemetric?

- particle mass: *too low, probably not meaningful*
- particle surface area: *more difficult to measure*
- particle number: *relatively easy to measure*
- other: *ROS inducing potential? Need to define methods*

A general UFP standard (targeting all UFP) based on any dosemetric would not make sense because of origin specific chemistry differences (*source specific UFP: anthropogenic, natural*) which cause significant differences in toxicity
Proposed Concept for UFP Standard

• UFP standard should best be source-specific

• Based on number concentration of emitted UFP
 consider UFP down to < 10nm

• Need to identify sources that emit most reactive UFP

• Regulate these sources (rather than all UFP) by introducing a number emission standard, based on UFP risk assessment

• Consider co-pollutants (particulate, gaseous)
Establishing an UFP Number Standard?

• Zero emissions for all sources *(or as low as technically feasible)*

• Epidemiology *(how source specific?)*

• Toxicology
 - in vitro: hazard identification and ranking, source specific
 - in vivo: risk characterization *(subchronic rodent inhalation)*
 many challenges: endpoints, extrapolation of NOAEL…

• Other?
Establishing an UFP Number Standard?

• Zero emissions for all sources *(or as low as technically feasible)*

• Epidemiology *(how source specific?)*

• Toxicology
 - *in vitro*: hazard identification and ranking
 - *in vivo*: risk characterization *(subchronic rodent inhalation)*
 many challenges: endpoints, extrapolation of NOAEL…

• Other?

Future Goal:

develop and validate in vitro or in silico methods

that allow to predict and characterize human risk
Benchmark Response (BMR) With Two Different Criteria for Response:
Hill Model for Pauluhn (2010) data based on lung burden (µg)

1 SD above control response

10% increase above control response

Note: After normalization, data are % increase relative to control with mean = 0.