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Introduction

A detailed characterisation of airborne particles in the nanometre to sub-micrometre size range is mandatory
in various fields e.g. risk assessment of products containing engineered nanoparticles or monitoring of
combustion generated nanoparticles in emission as well as air quality control.

Knowledge about particle size distribution and size resolved chemical composition obtained with a high time
resolution is essential for the monitoring of exhaust aerosols from combustion processes and for a detailed
understanding of the dynamic behaviour of nanoparticles. However, most of the available techniques are not
able to provide such physical and chemical information simultaneously.

Scanning Mobility Particle Sizer (SMPS) is well established and widely used for physical aerosol
characterisation. It provides size distribution and number concentration of particles in a size range from about
5 to 500 nm within scan durations of just some minutes.

Inductively Coupled Plasma Mass Spectrometry (ICPMS) allows a determination of elemental composition with
excellent detection limits and a wide dynamic measuring range.

The coupling of SMPS and ICPMS will allow achieving size and chemical information at the same time. The
expected full size range scan duration of several minutes and the even shorter scan times for narrower size
ranges will enable transient particle observation, and it opens the possibility to chemically characterise an
aerosol in its original condition instead of sampling particles first and analysing them afterwards.

Current Practice

As an example the VERT Secondary Emission Test VSET procedure is illustrated in Fig. 1. This test series is part
of the Swiss sustainability test for diesel particulate filter systems 14 These testing setup and procedure are
regulated in the Swiss National Standard SN 277 206", Besides a detailed monitoring of particulate matter the
VSET test includes also chemical analysis of the fuel fired during the filter tests, determination of the major
gaseous pollutants and toxic trace components in the engine exhaust. Fig. 1 gives a brief overview of the VSET
procedure and the current practice for size fractionated sampling and elemental analysis of particles.

The particle characterisation includes separate physical and chemical analyses. Aerosol dilution and
conditioning is needed for physical particle measurements i.e. determination of size distribution and number
concentration. These values are usually obtained by SMPS and a separate sensor providing real-time particle
number concentration information.

The SMPS consists of a differential mobility analyser (DMA) and a condensation particle counter (CPC). In the
DMA the airborne particles pass between the electrodes of a cylinder capacitor. High voltage between the
capacitor electrodes forces the particles to move through an air layer called sheath air between the original



carrier gas and the inner capacitor electrode. The high voltage determines which specific particle size exactly
reaches the DMA outlet for further analysis, i.e. counting by the condensation particle counter CPC.

The additional chemical characterisation of the particulate fraction makes size-classified sampling with
subsequent chemical analyses necessary. Behind a separate dilution tunnel the particles are sampled on a filter
for subsequent weighing to determine the total particulate mass concentration, and size fractionated particle
collection in a cascade impactor is performed for later chemical analysis using plasma mass spectrometry

(ICPMS) which provides elemental compositionle].

The chemical analysis includes an acid digestion of every particle size fraction sample. The resulting liquid
samples can then be atomised into an argon atmosphere. The sampled originally particulate matter dissolved

in liquid and dispersed in argon passes the argon plasma where it is ionised and is then analysed in the mass
spectrometer of the ICPMS.
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Fig. 1: Current Practice Example: VERT Secondary Emission Test VSET

This analysis procedure allows determining the overall composition of particles which have been collected
during a specific sampling duration, i.e. usually during one driving test cycle. It has the following disadvantages:

e Time-consuming procedure due to the separate particle sampling and the different steps of sample
preparation for chemical ICPMS analysis.

e Risk of contamination due to transport, storage, and handling of the impactor sampling filters.

e No online information about chemical composition.

e Particle size resolution of chemical analysis limited by number and properties of cascade impactor
stages.

Proposed Novel Setup

A coupling of SMPS and ICPMS provides online size and chemical information simultaneously. The DMA selects
one particle size class out of the original aerosol. The number concentration is then determined by the CPC as it
is done in standard SMPS configuration, while the ICPMS connected in parallel to the CPC determines the
elemental composition. This is done for the whole particle size range.



Since the nanoparticles are already dispersed in gas they can be directly introduced to the plasma of the ICPMS
without the need of additional sampling, digestion and re-dispersion.

This novel setup provides the following benefits:

e Simultaneous information on particle size and chemical composition.

e Short scan durations of some minutes allowing quasi on-line elemental composition measurements.

e Size distribution and multi element information.

e Direct monitoring of transient processes.

e Elemental analysis of aerosols in their original conditions without separate sampling and sample

preparation.

Flow Concept for the SMPS-ICPMS Coupling
The planned setup is outlined in Fig. 2. Since the air tolerance of the argon plasma at the ICPMS inlet is limited

to about 10 to 20%, the DMA needs to be modified ensuring the transfer of the particles from air to argon
atmosphere. Thus, the DMA acts as a kind of gas exchanger for the originally airborne particles. Therefore the
sheath gas layer has to consist of argon instead of air in standard SMPS operation. To lower the argon
consumption, it is intended to partly recycle the argon used as sheath gas.
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Fig. 2: Flow Concept of the Novel Setup
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The DMA polydisperse sample inlet and monodisperse outlet have normally the same volume flow which
means also the excess out and the sheath in flow have to be equal. Therewith basically the excess flow can be
filtered and fed back to the sheath gas inlet, which usually is done in modern SMPS systems.

With this setup an air enrichment of the excess / sheath gas flow is expected since the polydisperse aerosol at
the DMA inlet consists of airborne particles while the particles at the monodisperse aerosol outlet will be



mainly dispersed in argon. Therefore at least a partial replacement of the excess gas by fresh argon is needed.
For this aim a series of mass flow controllers are added to the SMPS setup allowing variable excess gas
recirculation rates from 0 to 100 %.

The argon carried monodisperse particles at the DMA outlet are split into a CPC and an ICPMS fraction. An
additional mass flow controller allows adding argon or filtered air to the CPC inlet. This causes some extra
particle concentration reduction at the CPC inlet but it enables to adjust the monodisperse flow entering the
CPC and therewith to set variable flow fractions to the two sensors located downstream the DMA.

Challenges and Expected Limits
The DMA of the SMPS has to be operated using sheath argon instead of sheath air since the ICPMS requires the
measured particles to be carried in argon with a relatively low oxygen tolerance.

A sheath gas flow up to 15|/min will be needed depending on the desired particle size range limits. Therefore it
makes sense to take argon saving measures. The flexible flow concept allows variable DMA inlet and outlet
flows including the possibility of up to 100% excess / sheath gas replacement. It is estimated that about 50%
recirculation will lead to over 90 % argon purity which is expected to be sufficient.

The behaviour of particles when transferred into argon atmosphere is expected to be different to that of
airborne particles. Hence, a new calibration of DMA and CPC is needed.

Even if the detection limits of ICPMS are extremely low a certain amount of particulate matter molecules are
needed. It is possible to detect e.g. single silver particles with 20nm diameter operating an ICPMS in single
element analysis mode. But the particle number concentration at the DMA monodisperse outlet has to be
higher if several elements have to be detected or if the particles are even smaller than 20nm.

A high particle concentration, low number of analysed chemical elements and low particle size resolution or
narrow measured size range will allow scan durations which might be similarly short as in standard SMPS
operation where a scan usually takes about 1 to 5min.

Scan durations will be enhanced by scanning broad size spectra with high size resolution and by measuring high
numbers of detected elements.
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