The Health Effects Of Nanoparticles
What, Where, How?

Dr. Rodger Duffin
MRC Senior Fellow in Respiratory Medicine
The Queen’s Medical Research Institute
University of Edinburgh

rodger.duffin@ed.ac.uk
Combustion-derived Nanoparticles

- WHO attributes 3 million premature deaths each year to air-pollution

- AHA estimate 63% of women and 48% of men that die from a heart condition have no previous symptoms

- Well documented epidemiological evidence linking increased exposure to CDNP with cardiovascular disease
Acute exposure

Association between exposure to traffic and the onset of acute myocardial infarction

[Odds ratio 2.9; CI, 2.2 to 3.8]¹

Chronic exposure

Living within 100 yards of a major road is associated with increased cardiopulmonary mortality [Relative risk 1.95; CI, 1.09 to 3.52]²

Proposed Mechanism

- Macrophage mediated pulmonary derived effects
- Direct translocation of nanoparticles into circulatory system
 - Thrombogenesis
 - Vasoconstriction
 - Plaque rupture

Exposure to dilute diesel exhaust for one hour impairs endothelium dependent and independent vasomotor function

Infused (solid line) and non-infused (dashed line) FBF following diesel (●) and air (●) during bradykinin (P=0.006), acetylcholine (P=0.07) and sodium nitroprusside (P=0.0002).

Mills et al/ Circulation 2005
Engineered nanoparticles, being developed for medical applications, share certain structural properties with combustion derived nanoparticles; exposure to which is known to have adverse cardiovascular effects.

Aims

1. To assess the particokinetics of inhaled and intravenously administered engineered nanoparticles.
2. Determine whether circulating nanoparticles cause platelet activation, platelet-monocyte aggregation, and thrombus formation.
3. Understand the effect of size, surface area and surface chemistry on the pro-thrombotic effects of nanoparticles.
Bespoke nanoparticles made in-house

<table>
<thead>
<tr>
<th>Particle</th>
<th>Size (nm)</th>
<th>Functionalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polystyrene beads</td>
<td>50, 100, 200</td>
<td>OH</td>
</tr>
<tr>
<td></td>
<td>50, 100, 200</td>
<td>COOH</td>
</tr>
<tr>
<td></td>
<td>50, 100, 200</td>
<td>NH</td>
</tr>
<tr>
<td></td>
<td>50, 100, 200</td>
<td>Dex</td>
</tr>
<tr>
<td></td>
<td>50, 100, 200</td>
<td>PEG</td>
</tr>
<tr>
<td></td>
<td>50, 100, 200</td>
<td>CY5.5</td>
</tr>
</tbody>
</table>

Made in collaboration with Professor Mark Bradley’s group, University of Edinburgh.
Commercially available nanoparticles

<table>
<thead>
<tr>
<th>Particle</th>
<th>Size (nm)</th>
<th>Functionalisation</th>
<th>Company</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endorem (A)</td>
<td>50-150</td>
<td>Dextran coated</td>
<td>Guebert</td>
</tr>
<tr>
<td>AngioSPARK (B)</td>
<td>20-50</td>
<td>Biocompatible</td>
<td>VisEN</td>
</tr>
<tr>
<td>Polystyrene beads (C)</td>
<td>50</td>
<td>COOH</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>NH</td>
<td></td>
</tr>
<tr>
<td>Quantum Dots (CdS-CdTe)</td>
<td>1-10</td>
<td>polyacrylate sodium sodium</td>
<td>ViveNano</td>
</tr>
<tr>
<td>Au (E)</td>
<td>5, 20, 50, 100, 200</td>
<td>N/A</td>
<td>Nanocs</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>Pegylated</td>
<td>Nanocs</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>Dextran coated</td>
<td>Nanocs</td>
</tr>
</tbody>
</table>

Commercially available nanoparticles
MRI of human liver using Endorem

Imaging vascular inflammation in mouse carotids using Angiospark
What do we hope to achieve?

• Development of safer engineered nanoparticles for medical applications

• Resolve a potentially important paradox in medical imaging and therapeutics: environmental nanoparticulate has been shown to have detrimental effects on the cardiovascular system, even at relatively low doses, yet in a quest to enhance cardiovascular imaging and therapy, direct intravascular infusion of nanoparticles (of potentially unknown toxicity and at high concentrations) into patients with unstable atheromatous disease is being proposed

• Gain a better understanding of the mechanisms through which inhaled nanoparticulate can contribute to adverse cardiovascular outcomes
Potential fate of medical nanoparticles

Systemic Nanoparticles

Monocytes → Platelets → Endothelium

Oxidative Stress/Cytokine Release

Alter adhesion/Aggregation → Fibrinolytic imbalance

Arterial thrombosis/plaque rupture

Ischemia/Infarct
Flow cytometric analysis of platelet activation markers

P-selectin Positive Platelets

- 250ug/ml
- 500ug/ml

PAC-1 Positive Platelets

- 250ug/ml
- 500ug/ml

CD62P/PAC-1 Positive Platelets

- 250ug/ml
- 500ug/ml

* P<0.05
Assessment of platelet viability following exposure to nanoparticles

30 min incubation with particles
n=4, **p<0.01
Exposure to amine beads caused a significant increase in platelet aggregation at relatively low doses.

Exposure to amine beads caused a significant increase in platelet aggregation at relatively low doses.

Exposure to amine beads caused a significant increase in platelet aggregation at relatively low doses.

Exposure to amine beads caused a significant increase in platelet aggregation at relatively low doses.
Potential fate of medical nanoparticles

Systemic Nanoparticles

Monocytes ➔ Platelets ➔ Endothelium

Oxidative Stress/Cytokine Release

Alter adhesion/Aggregation ➔ Fibrinolytic imbalance

Arterial thrombosis/plaque rupture

Ischemia/Infarct
Upregulation of platelet-monocyte aggregates in unstable angina

Quiescent

resting platelets

monocyte

Activated

activated platelets

P-selectin

monocyte

endothelium

Platelet monocyte binding after NP Exposure

N=5, * p<0.05
Monocytes: RED
Platelets: GREEN
NH-Beads: BLUE
The Badimon Chamber

Ex Vivo Model of Human Thrombosis

- Well established and validated method
- Advantages over other techniques
 - Human exposure system
 - Thrombus forms under conditions of continuous flow
- Flow conditions and thrombogenic substrate well characterised and reproducible
 - Models deep arterial injury
- The provision to add compounds into the extra-corporeal circulation
Slides digitally acquired at ×10 magnification and stained with Combined Massons Elastin stain and with an anti-fibrin stain
The Effect of Exogenous t-PA

12 Healthy Volunteers (4 Visits each)

- Randomised
- Double-Blind
- Controlled
- Cross-Over

Control (Saline)
Feraheme
Carboxylated Beads
Amine Beads
Acknowledgements

Jennifer Raftis

Dr Nick Mills

Prof. Ken Donaldson
Prof. Dave Newby

Dr Andrew Lucking

Prof. Mark Bradley
Frank Thielbeer

Colleagues in the Centres for Inflammation Research and Cardiovascular Sciences