International comparisons of national standards for particle counting and sizing

13th ETH-Conference on Combustion Generated Nanoparticles, June 22nd to 14th 2009
Outline

- **Introduction**
 Motivation – range of concentrations and sizes

- **National metrology Institutes (NMI)**
 role – traceability

- **Project EURAMET 1027**
 scope – procedure – participants – instrumentation

- **EURAMET 1027 – Comparison**
 aerosols – procedure – results number – results size

- **Summary and Outlook**
Motivation for Metrology

International comparisons of national standards for particle counting and sizing
Jürg Schlatter, Swiss Federal Office of Metrology METAS

ambient measurements

emission measurements

clean-room monitoring

human protection / security
Number concentration and size range

Examples of number concentrations:

- Diesel exhaust fumes: 1×10^9 cm$^{-3}$
- Urban air: 1×10^6 cm$^{-3}$
- Rural air: 10 000 cm$^{-3}$
- Mountain air (Jungfraujoch): 100 cm$^{-3}$
- Clean room class 9 (> 0.5 μm): 35 cm$^{-3}$
- Clean room class 6 (> 0.1 μm): 1 cm$^{-3}$

Examples of particle sizes:

- Water molecule: 0.1 nm
- Viruses: 1 nm – 5 nm
- Tobacco and Engine smoke: 10 nm – 1000 nm
- Bacteria: 0.5 μm – 50 μm
- Coal dust: 1 μm – 100 μm
Role of a metrology institute (NMI)

NMI must cover the need for correct measurements:

• Trading units:
 Mass, electrical current, volume, length …

• Public health of human, animals (production and wild):
 contamination of food, air pollution, soil pollution, noise …

• Public security:
 radioactivity, speed of cars, …

• Administrative measures:
 Homologation of vehicles, exhaust measurements, …

NMI may delegate the responsibility to a designated body.
Traceability on level of NMIs

e.g. for gas analytics CCQM from CIPM is responsible
www.bipm.org

www.bipm.org

www.euramet.org

Process is necessary for declaration in BIPM-database:
Calibration and measurement capabilities (CMC)
http://kcdb.bipm.org/

International comparisons of national standards for particle counting and sizing
Jürg Schlatter, Swiss Federal Office of Metrology METAS
Project EURAMET 1027 – framework

Goal:
• Degree of equivalence for particle number concentration of national standards
• Degree of equivalence for particle sizing (equivalent mobility diameter) of national standards
• Exchange of knowhow between NMIs
• Assessment of measurand (especially size distribution parameters) for future comparisons

Method:
• Experimental work
• Comparison with combustion aerosol (CAST): unimodal and quasi monodisperse particles
• Measurement at same moment the same aerosol
Participants

<table>
<thead>
<tr>
<th></th>
<th>Measurand</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIST (JP)</td>
<td>Number</td>
</tr>
<tr>
<td>DFM (DK)</td>
<td>Structure</td>
</tr>
<tr>
<td>FORCE (DK)</td>
<td>Size</td>
</tr>
<tr>
<td>METAS (CH)</td>
<td>Number</td>
</tr>
<tr>
<td>NPL (GB)</td>
<td>Size</td>
</tr>
<tr>
<td>UBA (DE)</td>
<td>Size</td>
</tr>
</tbody>
</table>

Instrument types

- **Number:** Condensation Particle Counter (CPC)
- **Size:** Scanning Mobility Particle Sizer (SMPS)
- **Structure:** Electrical Low Pressure Impactor (ELPI)
- **Structure:** Atomic Force Microscope
EURAMET 1027 – aerosol generation

Particle generation:

"natural" size distribution

monodisperse size distribution

International comparisons of national standards for particle counting and sizing
Jürg Schlatter, Swiss Federal Office of Metrology METAS
EURAMET 1027 – comparison routine

Particle number and concentrations

„natural“ size distribution $\sigma_g \approx 1.6$

d_i: 70 ... 170 nm at c_i: 10^3 cm$^{-3}$... 10^6 cm$^{-3}$

„monodisperse“ size distribution: $\sigma_g < 1.1$

d_i: 50 ... 180 nm at c_i: 10^3 cm$^{-3}$ and 10^4 cm$^{-3}$

Cycle per particle size:

<table>
<thead>
<tr>
<th>Stabilisation d and c_1</th>
<th>Measurement c_1</th>
<th>fresh air</th>
<th>Stabilisation c_2</th>
<th>Measurement c_2</th>
<th>fresh air</th>
<th>Stabilisation c_3</th>
<th>Measurement c_3</th>
<th>fresh air</th>
<th>Measurement c_4</th>
<th>fresh air</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>30</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>5</td>
<td>5</td>
<td>30</td>
</tr>
</tbody>
</table>

t / min

International comparisons of national standards for particle counting and sizing

Jürg Schlatter, Swiss Federal Office of Metrology METAS
Number concentration – “natural” size distribution

Nominal particle concentration for d = 100 nm and GSD = 1.6

The bars indicate the uncertainties with $k = 2$
International comparisons of national standards for particle counting and sizing

Jürg Schlatter, Swiss Federal Office of Metrology METAS

Nominal particle concentration for \(d = 50; 70; 180 \) nm and \(\text{GSD} = 1.1 \)

The bars indicate the uncertainties with \(k = 2 \)
Material erosion of a particle under an AFM scan sequence

AFM pictures from DFM

(image rotated 180°)

International comparisons of national standards for particle counting and sizing
Jürg Schlatter, Swiss Federal Office of Metrology METAS
Mode and geometric mean – “natural” size distribution

Diameter = Electrical Mobility ≠ Aerodynamic diameter

The bars indicate the uncertainties with \(k = 2 \)

International comparisons of national standards for particle counting and sizing

Jürg Schlatter, Swiss Federal Office of Metrology METAS
Mode and geometric mean – “monodisperse” size distribution

Nominal particle concentration for d = 50; 70; 180 nm and GSD = 1.1

Diameter = Electrical Mobility ≠ Aerodynamic diameter

The bars indicate the uncertainties with $k = 2$
National standards for particle number concentration and particle size measurement have been established in NMIs.

Particle number concentrations:
- Equivalence of particle counters within stated uncertainties
- Equivalence of particle counters normally within ± 5 %
- Equivalence of particle sizers much better
- Lack of uncertainty statement for sizers

Particle size distributions (electrical Mobility):
- Equivalence of particle counters within stated uncertainties
- Equivalence for Mode and Geo. Mean within ± 5 %
- Equivalence of particle sizers much better
- Lack of uncertainty statement for sizers
Outlook

- Particle number concentration and particle size become important quantities in environmental protection and occupational safety.

- With EURAMET 1027 collaboration of NMIs has started; project supports future national initiatives.

- Equivalence is proved for “well-behaved” particles; NMI are willing to take over the responsibility to establish the reference for particle measurements.

- Further discussion is needed on: cropped size distributions, distribution parameters, size distributions curve fitting, uncertainty.

- Further work needed to enlarge size range.
Thank you

AIST Hiromu Sakurai
DFM Kai Discherl
FORCE Karsten Fuglsang
NPL Jordan Tompkins, Richard Gilham
UBA Klaus Wirtz

juerg.schlatter@metas.ch
www.metas.ch/aerosol