Assessment of self-pollution of school buses with various retrofit technologies

Harish C. Phuleria, ISPM, University of Basel, Basel, Switzerland
Timothy Larson, University of Washington, Seattle, WA
Barbara Zielinska, Desert Research Institute, Reno, NV
Robert Ireson, Air Quality Management Consulting, Greenbrae, CA,
Mark Davey, University of Washington, Seattle, WA
Christopher Weaver, Engine Fuel & Emissions Engg. Inc., Rancho Cordova, CA
John Ondov, University of Maryland, College Park, MD
Thomas Hesterberg, International Truck & Engine Corp., Warrenville, IL
L.-J. Sally Liu, ISPM, Univ. of Basel, Basel and Univ. of Washington, Seattle, WA

13th ETH Conference on Combustion Generated Nanoparticles, Zurich
June 22-24, 2009
Background

- More than 24 Million children in USA commute by school buses every day
- Studies have shown adverse health effects of traffic exhaust exposure
- Elevated levels of PM$_{2.5}$ and BC inside school buses in Connecticut (Wargo, ‘05), Los Angeles (Behrentz, ‘05; Sabin, ‘05) and Seattle (Adar, ‘08; Zielinska, ‘08)
Motivation

• Most diesel exhaust particles on buses are attributable to bus itself - self-pollution. (Fitz 03; Sabin 05)

• Ireson (2004) reported little self-pollution from the tailpipe

• UW’s bus self-pollution (SP) study; in year 2005 with 2 Seattle buses without CCV (closed crankcase ventilation)

• Liu (2008) and Zielinska (2008) show crankcase contribution greater than tailpipe
Remaining Questions ??

• Can we generalize these results on bus self-pollution?

• Does CCV reduce the crankcase emissions effectively?

• Does DOC (diesel oxidation catalyst) help at all?

• What is the effect of windows open/ closed on bus self-pollution?
Locations and bus routes
Bus selection

(Null, DOC, CCV, DOC+CCV)

<table>
<thead>
<tr>
<th>Bus ID</th>
<th>DOC</th>
<th>CCV</th>
<th>Model year</th>
<th>Engine model</th>
<th>Engine location</th>
<th>Mileage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seattle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1DC</td>
<td>Y</td>
<td>Y</td>
<td>2002</td>
<td>T444E</td>
<td>F</td>
<td>42,492</td>
</tr>
<tr>
<td>1DX</td>
<td>Y</td>
<td>N</td>
<td>2002</td>
<td>T444E</td>
<td>F</td>
<td>42,492</td>
</tr>
<tr>
<td>2XC</td>
<td>N</td>
<td>Y</td>
<td>2002</td>
<td>T444E</td>
<td>F</td>
<td>49,550</td>
</tr>
<tr>
<td>2XX</td>
<td>N</td>
<td>N</td>
<td>2002</td>
<td>T444E</td>
<td>F</td>
<td>49,550</td>
</tr>
<tr>
<td>Tahoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5DC</td>
<td>Y</td>
<td>Y</td>
<td>1993</td>
<td>DT360</td>
<td>F</td>
<td>149,605</td>
</tr>
<tr>
<td>6DX*</td>
<td>Y</td>
<td>N</td>
<td>1993</td>
<td>5.9L</td>
<td>R</td>
<td>168,000</td>
</tr>
<tr>
<td>7DX**</td>
<td>Y</td>
<td>N</td>
<td>1993</td>
<td>DT360</td>
<td>F</td>
<td>144,201</td>
</tr>
<tr>
<td>8DC</td>
<td>Y</td>
<td>Y</td>
<td>1993</td>
<td>DT360</td>
<td>F</td>
<td>160,200</td>
</tr>
<tr>
<td>8DX</td>
<td>Y</td>
<td>N</td>
<td>1993</td>
<td>DT360</td>
<td>F</td>
<td>160,200</td>
</tr>
</tbody>
</table>

* Donaldson CCV unit disconnected prior to the tests
* Strong odors reported coming from rear engine compartment into bus during operation
** Engine failure (turbo seals ??) during emission testing; testing aborted
Study design - In-cabin, Lead Vehicle and Source sampling

• A 3-week study (Aug 14-Sep 1, 2006)
• Sampling on 6 buses with total 9 configurations

• **On bus**: Collocated PM$_{2.5}$ samplers at 120 L/min, and PM$_1$ sampler at 16.7 L/min
• Simultaneous sampling of tailpipe and crankcase emissions using two parallel dilution tunnels in most runs

• **On bus and Lead Vehicle**: pDR, Ptrak and EcoChem
Sampling Schematic

1DX
- Without CCV
 - In-cabin sampling
 - Windows closed
 - Two 1-hour samples
 - Source sampling
 - Windows open
 - Two 1-hour samples

1DC
- With CCV (Racor)
 - In-cabin sampling
 - Same as without CCV
 - Source sampling
 - Three 30-min samples from crankcase and tailpipe
 - One 30-min tunnel blank sample

Bus 1 (DOC retrofitted)
Chemical Analysis

- **PM$_{2.5}$** Teflon filters: gravimetric and INAA for Iridium

- **PM$_{2.5}$** quartz filters: detailed organics
 - OC and EC using the TOR-IMPROVE protocol
 - Speciated organic analysis including d-alkane (C$_{36}$D$_{74}$) with GC/MS

- **PM$_{1}$** filters: gravimetric and XRF for trace elements
Estimating self-pollution using tracers

\[\text{PM}_{2.5, \text{SP}} = \text{PM}_{\text{Tailpipe}} + \text{PM}_{2.5, \text{Crankcase}} \]

\[= \text{Ir}_{\text{in-cabin}} \frac{\text{PM}_{\text{TP}}}{\text{Ir}_{\text{TP}}} + \text{d-alkane}_{\text{in-cabin}} \frac{\text{PM}_{2.5, \text{Ck}}}{\text{d-alkane}_{\text{Ck}}} \]

- Organo-metallic Ir complex added in diesel fuel as tracer for tailpipe emissions
- d-alkane (C\text{36}D\text{74}) added in lubricating oil as tracer for crankcase emissions
In-cabin total PM$_{2.5}$

Seattle buses

- No Retrofit
- DOC
- CCV
- DOC+CCV
- DOC
- DOC
- DOC
- CCV+DOC
- CCV+DOC

Tahoma buses

- Windows closed
- Windows open

<table>
<thead>
<tr>
<th>Bus ID and configurations</th>
<th>In-Cabin PM$_{2.5}$ ($\mu g/m^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2XX</td>
<td>20.0</td>
</tr>
<tr>
<td>1DX</td>
<td>15.0</td>
</tr>
<tr>
<td>2XC</td>
<td>20.0</td>
</tr>
<tr>
<td>1DC</td>
<td>15.0</td>
</tr>
<tr>
<td>6DX</td>
<td>60.0</td>
</tr>
<tr>
<td>7DX</td>
<td>40.0</td>
</tr>
<tr>
<td>8DX</td>
<td>30.0</td>
</tr>
<tr>
<td>5DC</td>
<td>20.0</td>
</tr>
<tr>
<td>8DC</td>
<td>15.0</td>
</tr>
</tbody>
</table>
In-cabin crankcase PM\textsubscript{2.5}

Seattle buses

- No retrofit
- DOC
- CCV
- CCV+DOC

Tahoma buses

- 2XX
- 1DX
- 2XC
- 1DC
- 6DX
- 7DX
- 8DX
- 5DC
- 8DC

Bus ID and configurations

In-Cabin PM\textsubscript{ck} (μg/m3)

Windows closed
Windows open
In-cabin tailpipe PM$_{2.5}$

Seattle buses

<table>
<thead>
<tr>
<th>Bus configurations</th>
<th>In-Cabin PM$_{tp}$ (g/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No retrofit 2XX</td>
<td>Windows closed</td>
</tr>
<tr>
<td>DOC 1DX</td>
<td></td>
</tr>
<tr>
<td>CCV 2XC</td>
<td></td>
</tr>
<tr>
<td>CCV+DOC 1DC</td>
<td></td>
</tr>
<tr>
<td>DOC 6DX</td>
<td></td>
</tr>
<tr>
<td>DOC 7DX</td>
<td></td>
</tr>
<tr>
<td>DOC 8DX</td>
<td></td>
</tr>
<tr>
<td>CCV+DOC 5DC</td>
<td></td>
</tr>
<tr>
<td>CCV+DOC 8DC</td>
<td></td>
</tr>
</tbody>
</table>

Tahoma buses

Windows closed

Windows open
In-cabin OC conc.

Seattle buses

Tahoma buses

Bus ID and configurations

In-Cabin OC (µg/m³)

Windows closed

Windows open

- No Retrofit
- DOC
- CCV
- DOC+CCV
- DOC
- DOC
- DOC+CCV
- DOC
- CCV+DOC
- CCV+DOC

Bus ID:
- 2XX
- 1DX
- 2XC
- 1DC
- 6DX
- 7DX
- 8DX
- 5DC
- 8DC
In-cabin EC conc.

Seattle buses

Tacoma buses

In-Cabin EC (μg/m³)

Bus ID and configurations

Windows closed

Windows open

No Retrofit

DOC

CCV

DOC+CCV

DOC

DOC

DOC

CCV+DOC

CCV+DOC

2XX 1DX 2XC 1DC 6DX 7DX 8DX 5DC 8DC
Continuous measurements

- **PM$_{2.5}$**
 - Windows closed
 - Windows open

- **PN**
 - Windows closed
 - Windows open

Equations:
- \(y = 0.6957x + 1901.8 \) \(R^2 = 0.9425 \)
- \(y = 0.5375x + 1416.3 \) \(R^2 = 0.7223 \)
- \(y = 0.6957x + 1901.8 \) \(R^2 = 0.9425 \)
Comparisons with previous findings

<table>
<thead>
<tr>
<th>Parameters</th>
<th>This study</th>
<th>Liu et al., 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seattle</td>
<td>Tahoma</td>
</tr>
<tr>
<td></td>
<td>No CCV</td>
<td>CCV</td>
</tr>
<tr>
<td>Windows closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP (μg/m³)</td>
<td>8.2</td>
<td>1.0</td>
</tr>
<tr>
<td>% PMck/SP</td>
<td>94</td>
<td>25</td>
</tr>
<tr>
<td>% SP/PM2.5</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>Windows open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP (μg/m³)</td>
<td>3.9</td>
<td>0.3</td>
</tr>
<tr>
<td>% PMck/SP</td>
<td>82</td>
<td>7</td>
</tr>
<tr>
<td>% SP/PM2.5</td>
<td>14</td>
<td>1</td>
</tr>
</tbody>
</table>

- In our 2005 bus SP study (Liu, 2008), bus model year were 2002 and 1999
- Both had DOC and none CCV
Summary

- Self-pollution ranged 1-8.2 μg/m³ when windows closed; 0.3-3.9 μg/m³ when windows open (wo).
- In-cabin PM$_{2.5}$ and OC were higher when windows closed (wc).
- In newer (2002) buses, crankcase contribute 77 and 87% of SP (wo,wc), while ~30, 55% of SP (wo,wc) in older (1993) buses.
- Crankcase PM$_{2.5}$ ~5-10 times higher than tailpipe PM inside the bus.
- Retrofit CCV control effectively reduced in-cabin PM$_{2.5}$ and OC emissions; DOC did not.
- In cabin PN track roadway levels very well and about 50% of roadway background (wc) and 70% (wo).
Acknowledgements

- National Institute of Environmental Health Sciences (NI EHS) (#1R01ES12657-01A1)
- Gift fund from the International Trucks and Engine Inc. to the University of Washington
- Department of Energy (DoE) office of FreedomCAR and Vehicle Technologies through the National Renewable Energy Lab (NREL)
- Puget Sound Clean Air Agency
- The Seattle School District and its Transportation Department