Investigation of In-Cylinder Soot Formation and Oxidation during Transient Engine Operation

Patrick Kirchen
Konstantinos Boulouchos

Aerothermochemistry and Combustion Systems Laboratory
ETH Zurich

Andrea Bertola
Kistler Instruments
Winterthur AG

13th ETH Conference on Combustion Generated Nanoparticles
June 22 - 24, 2009 - ETH Zurich
INTRODUCTION

- Cycle specific characterization is necessary to understand processes
- Existing soot instrumentation is neither cylinder nor cycle specific
- 11th ETH Conference - correlation of exhaust stream and in-cylinder measurements
- 12th ETH Conference - Exhaust stream measurement of transient soot emissions
- Today: Combination of these two works to consider transient, in-cylinder processes

- Soot emissions measured using an AVL Micro Soot Sensor during ETC cycle
- Significant challenge to total emissions are „transients“

Source: Schindler et al, 2004-01-0968
OUTLINE

- Testbench and instrumentation
- Overview of in-cylinder pyrometry
- Overview of exhaust stream measurements
- Detailed analysis of in-cylinder measurements and observed phenomena
● **Passenger car, common rail engine:**
 - DaimlerChrysler OM611
 - VTG, EGR, $p_{\text{inj,max}} \sim 1350$ bar

● **Exhaust stream soot emissions:**
 - Dekati Fine Particle Sampler
 - AVL Micro Soot Sensor

● **Transient characterization of instrumentation (Δt, τ)**

● **Pyrometers mounted in cylinders 1,3 and 4 provide:**
 - Soot concentration
 - Soot temperature
SOOT MEASUREMENT

- Multi-color pyrometry considers light intensity to determine in-cylinder:
 - Soot cloud temperature
 - Soot concentration (KL factor)

- Considers only hot ("glowing") soot
- Limited to soot within field of view

\[
\begin{align*}
1 - \left(\frac{C_2}{e^{\lambda_1 T} - 1} \right) & = 1 - \left(\frac{C_2}{e^{\lambda_2 T} - 1} \right) \\
T_{\lambda_1,\lambda_2} & = T_{\lambda_1,\lambda_3} = T_{\lambda_2,\lambda_3}
\end{align*}
\]

\[
KL = -\lambda^{1.39} \ln \left[1 - \left(\frac{C_2}{e^{\lambda T} - 1} \right) \right]
\]

\[
KL_{\lambda_1} = KL_{\lambda_2} = KL_{\lambda_3}
\]

Hottel and Broughton. *Ind. Eng. Chem.*, 1932. 4(2)
3 COLOR PYROMETRY

- System initially developed by LAV\(^1\); later in conjunction with Kistler AG and Sensoptic\(^2\)
- Uses 3 wavelengths for redundancy (T, KL cross-verification)
- Wide field of view (140°) considers “most” of the cylinder
- Window heated to \(~600°C\) to prevent contamination and provide long-term signal stability
- Very small size permits use in production engines (glowplug adapter, for eg.)

\(^1\) R. Schubiger et al. MTZ, 2002. 5(63):342-353
3 COLOR PYROMETRY

USEFUL PARAMETERS

- KL_{end} - correlates with exhaust stream measurements ($R^2 \sim 0.8...0.9$)
- Cycle resolved engine out soot emissions

- KL_{max} - measure of soot formation
- γ_{ox} - measure of soot oxidation
- Relative characterization of formation and oxidation processes

TRANSIENT MEASUREMENTS

CONSIDERED TRANSIENTS

- **Acceleration** (speed increase)
 - No notable change over steady-state

- **Tip-in** (load increase)
 - 1250 and 2000 rpm
 - \(\Delta t = 0.5 \ldots 5 \) s

\[
\text{QSS} = f(n, p_{me})
\]

Transient and steady-state emissions compared using a Quasi Steady State (QSS) approximation\(^1\)

\(^1\)Hagena et al. SAE 2006-01-1151, 2006
- Transient soot emissions generally higher than steady-state (QSS)
- Faster transients result in much higher emissions

- Transient soot emissions lower than at 1250 rpm
- Only the fastest transient results in increased soot emissions

IN-CYLINDER PYROMETRY

TIP-IN TRANSIENT (1250 rpm)

- Comparison of normalized KL parameters during transient
- Increase in fuel quantity -> increase in KL_{max}
- Corresponding increase in oxidation (\gamma_{ox}) lags behind
 - Poor oxidation leads to increased engine-out emissions (KL_{end})
- What causes the poor oxidation?

1250 rpm
\Delta t = 0.5 s
- KL_{max} not strongly influenced by transient operation
- Oxidation considerably slower during transient operation and stops earlier
- No significant differences between steady state and transient soot temperatures

\Rightarrow Oxidation inhibited due to lack of O_2

P. Kirchen, ETH Diss. Nr. 18088, 2008
OXYGEN AVAILABILITY

TIP-IN TRANSIENT (1250 RPM)

- **Short term oxygen deficit caused by:**
 - Slow EGR valve closing
 - Slow increase in charge pressure
 - Rapid increase in fuel quantity

![Graph showing relative oxygen-fuel ratio over time for different time intervals.](image)

- **1250 rpm**
POST-TRANSIENT PHENOMENA

- **After transient:**
 - Transient soot emissions are lower than steady state
 - Only gradually increase and reapproach steady state value (~60s)

- **Phenomena correlates with a gradual increase in intake charge temperature**

- **Mechanism for reduction of engine-out emissions is unclear...**

Graph:

- **2000 rpm**
- **Δt = 0.5 s**

Axes:
- **Time, t [s]**
- **Soot Emissions [g·kWh⁻¹]**

Lines:
- Measurement (trans. ave.)
- Measurement (trans. indiv.)
- QSS Approximation
T DURING TI P-I N TRANSIENTS

- Lower temperature after transient, when compared to QSS
- Intake charge temperature provides estimate of soot formation temperature

Akihama et al. SAE 2001-01-0655, 2001

- Reduction of formation temperature results in lower soot emissions
IN-CYLINDER PYROMETRY

TIP-IN TRANSIENT (2000 rpm)

- Same trends seen during transient as at 1250 rpm
- Influence of transient less extreme due to higher charge pressure
- Slower phenomena observed after transient (correlates with intake charge temperature)
- Causality focus of current research...

P. Kirchen, ETH Diss. Nr. 18088, 2008

2000 rpm
Δt = 0.5 s

Normalized KL Parameters [-]

~ Time [s]

m_f [kg/cycle]

15 13th ETH Conference on Combustion Generated Nanoparticles – Kirchen et al. 22.06.2009
CONCLUSIONS

- Multicolor pyrometry is a powerful tool for the measurements of cylinder and cycle specific, in-cylinder soot concentration and temperature
- During tip-in transients:
 - Soot formation is approximately the same as during steady-state \((K_{\text{Lmax}}) \)
 - Soot oxidation is weaker due to an oxygen deficit \((Y_{\text{ox}}) \)
- Only 5-10 cycles responsible for high engine out soot emissions
- Slow increase in intake charge temperature after transient results in:
 - Gradual increase in engine-out soot emissions to final steady-state values
 - Gradual increase in \(K_{\text{Lmax}} \) to steady state value
- Precise influence of charge temperature is not yet completely understood …
THANK YOU FOR YOUR ATTENTION!!

www.lav.ethz.ch