Biobased diesel fuels: particulate emissions and their inflammation response

M. Ihalainen¹, K. Kuuspalo¹, T. Karhunen¹, J. Ruusunen¹, P. Willman¹, M. Tapanainen¹,², P. Jalava¹,², R. O. Salonen², A. Pennanen², M. Happo², M-R. Hirvonen¹,² and J. Jokiniemi¹,³

¹Fine Particle and Aerosol Technology Laboratory, Department of Environmental Science, University of Kuopio P.O. Box 1627, FI-70211 Kuopio, Finland
²National Institute for Health and Welfare, Department of Environmental Health, P.O. Box 95 FI-70701 Kuopio, Finland
³VTT Technical Research Centre of Finland, Fine Particles, P.O. Box 1602, 02044 VTT, Espoo, Finland

Lately there has been increasing pressure for the energy sector to find more environmentally friendly means of energy production. For diesel fuel production this trend means a shift from conventional fossil fuels to biobased alternatives. Very little is, however, known about the consequences of such a shift. One concern is how the differences between the fossil and the biobased fuels affect the physico-chemical characteristics and toxicity of the emissions.

The aim of this study was to investigate the effects of biobased diesel fuels on diesel engine emissions. We concentrated on the differences of particle mass emission, particle emission toxicity (inflammation) and chemical composition (organic and elemental carbon, OC/EC), particle number size distributions, and regulated gaseous emissions between different fuels. The measurements were carried out also with a catalytic converter (DOC+POC) to see, how a diesel oxidation catalyst (DOC) and a particle oxidation catalyst (POC) affect the emissions.

Biofuels used in this study were a 1st generation biodiesel rapeseed methyl ester (RME), and a hydro-treated vegetable oil (HVO). Conventional diesel (EN590) was used as a reference fuel. A non-road EURO II diesel engine coupled with an engine dynamometer was employed for this study and operated according to the international ISO standard (ISO 8178-4:1996, C1).

For the measurements of particle size distribution, OC/EC and particulate mass, a partial flow from the exhaust gas was diluted using a system consisting of a porous-tube diluter, an ageing chamber and an ejector-type diluter assembled accordingly. A similar dilution method has been previously used, for example in studies on diesel engine emissions by Lyränen et al. (2004). Particle number size distributions were measured with a Fast Mobility Particle Sizer (FMPS), an Electrical Low Pressure Impactor (ELPI) with a filter stage, and a Scanning Mobility Particle Sizer (SMPS) with a long and nano Differential Mobility Analyzer (DMA). The OC/EC contents of the emitted particles were analyzed using a thermal-optical method (Sunset laboratory Inc).

Particulate samples for the toxicological analyses were collected from a Constant Volume Dilution tunnel (ISO 8178) with a High Volume Cascade Impactor (HVIC) (Sillanpää et al. 2003). They were collected and pooled together from four previously chosen steady states. Mouse macrophage cells (RAW264.7) were exposed for 24 hours to the particulate samples in a dose-related manner. The production of the proinflammatory cytokine TNFα was measured by Enzyme Linked Immunosorbent Assay (ELISA).

Results show that RME decreased the particle mass emission by 15% and HVO by 25%, compared to EN590 (Figure 1.). In contrast, the particle number emission increased by about 20% for RME. These findings were explained by a smaller geometric mean diameter of the emitted particles for RME. There was no clear difference in particle number emissions between HVO and EN590, but like with RME, the geometric mean diameter of particles was lower for HVO than for EN590.

With the catalytic converter, both the particle number concentration and the mass emission were notably decreased, as expected. For all the fuels studied, the geometric mean diameter of the emitted particles increased, when the catalytic converter was used;
most likely due to higher removal efficiency of the nanosized particles.

The elemental and organic carbon analysis of the particulate samples showed, that the elemental carbon decreased by 20% and 30% for HVO and RME, respectively, compared to EN590 (Figure 1.). The organic carbon emissions, on the other hand, reduced by about 30% and 20% for HVO and RME, respectively. When a catalytic converter was used, both the elemental and the organic carbon emissions dropped by about 50%.

Fig 1. Organic and elemental carbon and total particulate mass emissions from fossil and biobased diesel fuelled engine, operated with and without catalytic converter.

The inflammatory (cytokine) response to the HVO particles was slightly higher than it was to the EN590 particles (fig. 2A). The responses to the EN590 and HVO particles also increased after a catalyst treatment of the emissions. The picture changed however, when the mass emission per kWh was taken into account (fig. 2B). The inflammatory potential of the particulate emission was assessed lower with the catalytic converter than without it and the inflammatory potential of the HVO particulate emission decreased below that of the EN590 particulate emission.

Fig 2. Production of the proinflammatory cytokine TNFα in macrophage cells by particles emitted from fossil and biobased diesel fuelled engine.

Biobased diesel fuels: particulate emissions and their inflammation response
Goals

• How do biobased diesel fuels affect emissions compared to the emissions of fossil diesel
 – Particulate
 • Physical
 • Chemical
 • Toxicological
 – Gaseous
• The effect of catalytic converter (DOC+POC)
Research team

- University of Kuopio, Finland
 Department of Environmental Science
 The Fine Particle and Aerosol Technology Laboratory
 - Prof. Jorma Jokiniemi
 Kari Kuuspalto,
 Mika Ihalainen,
 Tommi Karhunen,
 Kati Nuutinen,
 Pentti Willman

- National Institute for Health and Welfare,
 Department of Environmental Health
 - Prof. Maija-Riitta Hirvonen,
 Mikko Hampo,
 Raimo Salonen,
 Pasi Jalava,
 Maija Tapanainen,
 Arto Pennanen
Fuels

EN 590
- Conventional fossil diesel
- Sulfur < 10ppm

HVO
(Hydrotreated vegetable oil)
- Renewable biobased diesel
- Hydrotreatment --> paraffinic hydrocarbon
- Sulfur ~0ppm

RME
(Rapeseed methylester)
- Biodiesel
- Transesterification with methanol
- ~10% oxygen
- Sulfur < 10ppm
Catalytic converter (DOC+POC)

- Diesel oxidation catalyst (DOC)
 - Reduces HC, CO
 - Slight effect on PM
- Particle oxidation catalyst (POC)
 - Traps part of the soot particles
 - Continuous regeneration
Engine

- Kubota turbo diesel engine 1.123 L
- Indirect fuel injection
- Power and torque
 - Max. torque 90 Nm @ 2050 rpm
 - Max. power 24 kW @ 3000 rpm
Engine modes

-Modes from the ISO standard for nonroad diesel engines, C1 (ISO 8178-4:1996)
Particulate measurement

Devices
- FMPS
 - Fast Mobility Particle Sizer
 - 5.6nm – 560nm
- SMPS
 - Scanning Mobility Particle Sizer (3080), long and nano DMA
- Filter sampling
 - Mass and OC/EC analysis

Dilution
- Porous-tube diluter
 + ageing chamber
 + ejector diluter
Samples for the toxicological analyses

- HVCI - High Volume Cascade Impactor
- Dilution: constant volume dilution tunnel
- Samples from 4 steady states
- Expose cells: mouse macrophage cell line
- Exposure time: 24h
- Doses: 15, 50, 150, 300 μg/ml
- Indicators of: Inflammation, cytotoxicity, genotoxicity
Effects of fuel on particulate emissions

- No catalytic converter
- Intermediate speed 75%
Effects of fuel on particulate emissions

FMPS size distribution

- No catalytic converter
- Intermediate speed 75%
Effects of fuel on particulate emissions

- No catalytic converter
- Intermediate speed 75%
Effects of fuel on particulate emissions

FMPS size distribution

Total number concentrations over the whole cycle

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Total Number Concentration [1/cm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN590</td>
<td>~0%</td>
</tr>
<tr>
<td>HVO</td>
<td>+22%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Geometric Mean Diameter [nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN590</td>
<td>-2%</td>
</tr>
<tr>
<td>HVO</td>
<td>-9%</td>
</tr>
<tr>
<td>RME</td>
<td></td>
</tr>
</tbody>
</table>

w/o cat.
Effects of DOC+POC on particulate emissions

![Graphs showing the effects of DOC+POC on particulate emissions for RME and HVO. The graphs compare the number of particles per unit volume (dn/dlogDp) as a function of diameter (nm) for cases with and without DOC+POC.]
Effects of DOC+POC on particulate emissions

Absorption efficiency

Diameter [nm]

Total number concentration over the whole cycle

Geometric mean diameter over the whole cycle
Nucleation mode, idle

No catalytic converter

DOC+POC

UNIVERSITY OF KUOPIO
Department of Environmental Science, Fine Particle and Aerosol Technology Laboratory

Health, environment, wellbeing
Particulate mass emissions

Total mass, OC and EC emissions

![Bar chart showing total mass, OC, and EC emissions for different fuel types and mixing conditions.]

Total mass emission

![Bar chart showing total mass emissions for different fuel types and mixing conditions, with percentage changes indicated.]

UNIVERSITY OF KUOPIO
Department of Environmental Science, Fine Particle and Aerosol Technology Laboratory
Health, environment, wellbeing
Particulate mass emissions

Total mass, OC and EC emissions

Elemental carbon (soot)

Organic carbon
Production of inflammatory cytokine TNFα (ELISA immunoassay)

A) TNFα response per particulate mass (dose: 150µg/ml)
Production of inflammatory cytokine TNFα (ELISA immunoassay)

A) TNFα response per particulate mass (dose: 150µg/ml)

B) Relative TNFα response / kWh

Production of TNFα (pg/ml)

EN 590 HVO RME

w/o cat. With DOC+POC

University of Kuopio
Department of Environmental Science, Fine Particle and Aerosol Technology Laboratory

Health, environment, wellbeing
Conclusions

- Particulate emissions
 - RME and HVO decreased mass emissions when compared to EN590
 - RME produced more particles than EN590, but the particles were smaller.
 - Catalytic converter (DOC+POC) decreased mass emission (~-50%) and particle number concentrations (~-60%) on all fuels
 - There were a significant nucleation mode on low loads with EN590 and RME
 - Nucleation modes were suppressed by the catalytic converter (DOC+POC)
Conclusions

• Inflammation response
 – EN590 and HVO had largest inflammatory potency with equal mass dose
 – Catalytic converter (DOC+POC) increased the inflammatory responses per mass unit with EN590 and RME
 – Fuels and catalytic converter had an effect on particulate emissions
 → biobased fuels and catalytic converter reduced relative inflammation potency