Effect of Controlling Dilution Air Quality On Different Emissions Measurements

Jacob Swanson1, David Kittelson1, Andrew Dallas2

1 University of Minnesota, Minneapolis, MN 55454, 2Donaldson Company, Inc, Minneapolis, MN 55440

Introduction

In 2007 the U.S. Environmental Protection Agency reduced the heavy-duty Diesel on-road emissions standards for particulate matter (PM) to 0.01g/hp-hr. The European Union has also passed similarly stringent emissions regulations. Accurately measuring and impartially sampling PM at low concentrations poses an engineering challenge. For example, adsorption of gaseous compounds to a PM filter may be a significant source of the total “PM” mass1. Gaseous compounds or particles found in the exhaust dilution air may also bias mass measurements. Objectives of this study are to physically and chemically characterize different methods of dilution air cleaning and to investigate the influence of dilution air quality on gravimetric filter artifacts.

Dilution Air Cleaning

Some options exist for cleaning exhaust dilution air, most are specific to the emissions measurement method:

CVS (high-flow)
- HEPA* and/or carbon filters
- Few complete commercial systems are available
 - Dilution Air Refinement (DAR, Horiba)
 - Dilution Air Purification System (DAPS, Donaldson)

Partial flow sampling/2nd dilution of CVS flow (low-flow)
- Fixed-bed desiccant dryers
- Pressure swing adsorption (PSA)*
- Catalysts, denuders and many others

*Catalysts, denuders and many others tested in this study

Results — Dilution Air Cleaning

This work evaluated the filtration, drying and adsorption (VOC removal) performance of a silica gel dryer, silica gel/carbon dryer and PSA system. For VOC analysis, the systems were tested in parallel, each with an outlet flow rate of 200 slpm.

VOC removal: Gas samples were taken from the influent (baseline) and effluent of each air treatment system air using adsorption tubes followed with thermal desorption - gas chromatography - mass spectrometry analysis.

Summary: The dilution air cleaning evaluation is summarized below. Complete testing methodology details are available from Swanson, et. al2

Results — Dilution Air Artifacts

Dilution air filter artifacts were evaluated by sampling ~1.3 m³ of dilution air in 20 min, effectively simulating a US FTP certification test. The weight gained is due to adsorption of gas molecules on the TX40 filter. Each data set represents five filter samples, with each test done on a different day.

Conclusions

- The PSA process can generate 200 slpm of high-purity air (<1 ppbv VOCs, <1 part/cm³, <1ppbv NOx)
- High purity dilution air reduced the average apparent gaseous filter artifact from 6.44 to -3.14 µg (~10% of US standard). Khaele3 repeatedly found that during a HDD steady-state condition, filter mass loadings were 10 µg.
- These results suggest that the amount of PM emitted by modern Diesels engines may be much lower than indicated by filter measurements
- TX40 filters lose mass during handling or sampling
- Future work is determining the chemical identity of the compounds that adsorb to the filter, for “blank” samples and dilution air/exhaust mixtures

Acknowledgements

This work was funded and supported by Donaldson Company, Inc. Specifically, we thank Eivind Stenersen of Donaldson, for his initiation and continued support of this project. We acknowledge Debbie Arends of Donaldson Chemistry Services for performing the VOC analysis and Wanshu He (University of Minnesota volunteer) for assisting with filter weighing and sampling preparation.

References

3Khaele, I. A. “2007 Diesel Particulate Measurement Research.” CRC E-66 Project Phase-1, Southwest Research Institute, 2005

Contact
Jacob Swanson
jswanson@me.umn.edu
David Kittelson
kitte001@umn.edu

Acknowledgements

This work was funded and supported by Donaldson Company, Inc. Specifically, we thank Eivind Stenersen of Donaldson, for his initiation and continued support of this project. We acknowledge Debbie Arends of Donaldson Chemistry Services for performing the VOC analysis and Wanshu He (University of Minnesota volunteer) for assisting with filter weighing and sampling preparation.

References

3Khaele, I. A. “2007 Diesel Particulate Measurement Research.” CRC E-66 Project Phase-1, Southwest Research Institute, 2005