The Reactions of Flame Soot with Nitrogen Oxides (NO₂, NO₃, N₂O₅, HONO, HNO₃): a brief Overview

Michel J. Rossi
Laboratoire de Pollution Atmosphérique et Sol (LPAS), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Generous Funding by Fonds National Suisse de la Recherche Scientifique (FN), Office de l’Education et de la Science (OFES), Avina Foundation and State Secretariat for Education and Research (SER) of Switzerland
SOOT

• Definition: Soot is a product of incomplete flame combustion of hydrocarbon fuels at a given value of fuel/oxygen ratio λ (stoichiometric c. at $\lambda = 1.0$)

Stoichiometric Combustion: $C_nH_{2n+2} + (1.5n + 0.5) O_2 \rightarrow nCO_2 + (n + 1)H_2O$

• Soot = EC (=BC) + Organic Phase (OC)

• Ubiquitous occurrence (on a global level)

• 10-50% of all tropospheric particulate matter is carbonaceous

• Worldwide anthropogenic emissions: 12-24 Tg/yr (Penner, 1998): N.B. Uncertainty!

• Long range transport observed (Arctic Haze)
Chemical Model of Soot Structure
(Sergides et al., 1987)

ether linkage acid anhydride quinone
aldehyde, ketone
lactone
ketene
PAH
hydrogen bonding

Fig. 24. A proposed model of the three-dimensional n-hexane soot.
SOOT (cont.)

- The only atmospheric aerosol with a sizable optical absorption in the UV/VIS range
- Remarkable influence on climate (positive radiative forcing), public health (inhalation of nanoparticles) and tropospheric chemistry (reducing properties)
 - **Decrease** in albedo (SSA) owing to absorption of radiation (short- and longwave radiation)
 - **Increase** in cloud albedo owing to activation of CCN and decrease in precipitation (Twomey)

JJA Surface Temperatures (Hansen, 2002)

SSA = 0.85

No GH Gases!
Custom-designed Co-Flow Device for reproducible generation of decane \((C_{10}H_{22})\) soot: **Diffusion Flame**

<table>
<thead>
<tr>
<th>Flame type</th>
<th>Flame height [mm]</th>
<th>Flame colour</th>
<th>Soot deposition [mg min(^{-1})]</th>
<th>Air flow [l min(^{-1})]</th>
<th>Fuel duct (pore (\Phi))[(\mu m)]</th>
<th>Soot type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rich</td>
<td>(~ 60)</td>
<td>orange–red</td>
<td>(2.0\pm0.5)</td>
<td>1.2–1.4</td>
<td>17–40</td>
<td>”grey”</td>
</tr>
<tr>
<td>lean</td>
<td>(~ 55)</td>
<td>yellow–white</td>
<td>(0.8\pm0.4)</td>
<td>1.3–1.5</td>
<td>11–16</td>
<td>”black”</td>
</tr>
</tbody>
</table>
Control of Soot Production is mandatory in view of its Effects on Kinetics

Figure 6.1.1: Uptake of NO₂ on decane soot as a function of the NO₂ concentration. Soot samples were produced using a simple oil lamp; 4 mm diameter escape orifice, 1 over 100 seconds, mean sample weight was 17.5 mg.

Figure 6.1.2: Uptake of NO₂ on decane soot as a function of the NO₂ steady state concentration. Soot samples were produced using the new co-flow device; 4 mm diameter escape orifice, integrated over 100 seconds, mean sample weight was 16.4 mg.

Unstable flickering flame

Stabilized (controlled) flame

CAST or Co-Flow Device
Elemental analysis for several types of soot

Anticorrelation of H- and O-content of soot depending on λ - ratio

<table>
<thead>
<tr>
<th>Author</th>
<th>Soot (λ)</th>
<th>Elemental analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salgado,</td>
<td>hexane (λ=0.82)</td>
<td>94.73 ± 0.15</td>
</tr>
<tr>
<td>2002</td>
<td>hexane (λ=0.16)</td>
<td>93.01 ± 0.31</td>
</tr>
<tr>
<td>CAST Burner</td>
<td>hexane (λ=0.09)</td>
<td>92.03 ± 0.34</td>
</tr>
<tr>
<td>Matter</td>
<td>gray decane soot (rich flame)</td>
<td>97.27 ± 0.05</td>
</tr>
<tr>
<td>Engineering</td>
<td>black decane soot (lean flame)</td>
<td>96.39 ± 0.22</td>
</tr>
<tr>
<td>Stadler,</td>
<td>n-hexane</td>
<td>87-92.5</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>1.2-1.6</td>
</tr>
<tr>
<td>Akhter,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\lambda = \text{fuel}/\text{O}_2$ on a per C basis
Knudsen Flow Reactor: Kinetics, Branching Ratios and Reaction Products using MBMS

- Gas Phase is monitored: Molecular Beam-modulated MS
- Multispecies capabilities: MS and laser-based *in situ* detection techniques
- Relative Rate Technique put on an absolute Basis using measured k_{esc} (rate constants for effusion)
- Measurement of gas “uptake” in terms of uptake probabilities (γ)
NO₂ Reaction Mechanism for Amorphous Carbon
DEGUSSA Materials (Tabor 1994)

• Net reaction: NO₂ + {C} \rightarrow NO + {C•O}
• \(\gamma = 5 \times 10^{-2} \)
• Evolution of CO, CO₂ upon heat treatment of soot (incandescent lamp).

\[
\begin{align*}
\text{NO}_2 + \{\text{SS}\} & \leftrightarrow \{\text{SS} \cdot \text{NO}_2\}_p \\
\text{Reversible adsorption} \\
\text{NO}_2 + \{\text{SS}\} & \leftrightarrow \{\text{L}\} \\
\text{Reversible adsorption to a non-reactive species} \\
\{\text{SS} \cdot \text{NO}_2\}_p & \rightarrow \{\text{NO}_2 \cdot \text{I}\} + \{\text{SS}\} \\
\text{Conversion into an intermediate I (deeper layer)} \\
\{\text{NO}_2 \cdot \text{I}\} & \rightarrow \{\text{NO}_2 \cdot \text{R}\} \\
\text{Transfer to reservoir R} \\
\{\text{NO}_2 \cdot \text{I}\} & \rightarrow \text{NO} + \{\text{C•O}\} \\
\text{Decomposition to NO and a surface oxygen complex \{C•O\}.}
\end{align*}
\]
Correlation between NO$_2$ and HONO for reaction of NO$_2$ on gray (rich flame) decane soot (Stadler 2000)

Figure 6.2.1: Uptake experiment of NO$_2$ on ‘grey’ decane soot; sample mass = 16.3 mg, 4 mm diameter escape orifice, NO$_2$ concentration = 8.3x1012 molecule cm$^{-3}$.
Suggested Reaction Mechanism for HONO Formation on rich Flame Soot

• \(\text{NO} + \text{NO}_2 + \text{M} \rightarrow \text{N}_2\text{O}_3 + \text{M}\)
 gas phase reaction
• \(\text{N}_2\text{O}_3 + \text{H}_2\text{O} \rightarrow 2\text{HONO}\)
 heterogeneous reaction
• \(2\text{NO}_2 + \text{H}_2\text{O} \rightarrow \text{HONO} + \text{HNO}_3\)
 Too slow
• \(\text{NO}_2 + \{\text{C-H}\}_\text{red} \rightarrow \text{HONO} + \{\text{C-}\}_\text{ox}\)
• \(\text{NO}_2 + \text{H}_2\text{O} \rightarrow \text{HONO} + \text{OH}\)

\[\Delta H_r^0 = 40 \text{ kcal/mol (est.)}\]

Yields of HONO and NO are position dependent and complementary (anticorrelated) in ethylene flame

<table>
<thead>
<tr>
<th>Gerecke GRL 1998</th>
<th>Mass/mg</th>
<th>(\Phi(\text{HONO}))</th>
<th>(\Phi(\text{NO}))</th>
<th>(\gamma_0 \times 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue Flame</td>
<td>3</td>
<td>93±1</td>
<td>4±1</td>
<td>4±0.1</td>
</tr>
<tr>
<td>Standard spot</td>
<td>8</td>
<td>71±4</td>
<td>5±1</td>
<td>9.5±0.6</td>
</tr>
<tr>
<td>Flame top</td>
<td>6</td>
<td>68±5</td>
<td>31±2</td>
<td>3.2±0.3</td>
</tr>
<tr>
<td>Above flame</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>0.6±0.2</td>
</tr>
</tbody>
</table>

\(a\) The relative yields \(\Phi\) in % (per NO\(_2\) taken up) are integrated over 50s.
CONCLUSIONS: NO$_2$ - Soot

- Reaction products depend on type of soot unlike kinetics (γ).
- Reaction occurs with reducing surface functional groups on substrate, NOT CATALYTIC decomposition.
- X-tremes: 100% NO on amorphous carbon FW2 (channel black)
 100% HONO on hexane, decane soot from rich flame
- Both carbon-matrix as well as semivolatile organic fraction of soot partake in heterogeneous chemical reaction.
- HONO decomposes on (black) soot from lean combustion to yield NO as a final product: $2\text{HONO} \rightarrow \text{NO} + \text{NO}_2 + \text{H}_2\text{O}$.
- Complex surface reaction mechanism: inhibition and competition.
NO$_3$ / gray (rich flame) decane soot

N$_2$O$_5$ \rightarrow NO$_3$ + NO$_2$

Kinetics and Reaction Products have been investigated in Knudsen flow reactor under molecular flow conditions using in situ REMPI detection of NO, NO$_2$.

(a) m/e 30, (b) m/e 46, (c) raw REMPI signal for NO$_2$ detection at $\lambda = 511$ nm scaled to a MS signal at m/e 46, (d) m/e 62, (e) m/e 47, (f) m/e 63
(cont.)

(a) m/e 62, (b) m/e 47 (HONO), (c) NO

(a) m/e 62, (b) \(\text{N}_2\text{O}_5 \) (m/e 46), (c) m/e 63
Reaction Mechanism for NO$_3$ + decane soot

Source (N$_2$O$_5$ thermal dec.) → NO$_3$ (25%) + NO$_2$ (75%)

NO$_3$ + {C} → NO + {C•O$_2$} (12-17%)

Most of the lost NO$_3$ remains adsorbed on soot

NO$_2$ + {NO$_3$} → N$_2$O$_5$ (20-24%) (+ H$_2$O → 2HNO$_3$)

Rich (gray) Flame Soot:

NO$_2$ + {C-H}$\text{red} \rightarrow$ HONO + {C}ox (≈ 100%)

Lean (black) Flame Soot:

{2HONO} → {H$_2$O} + NO + NO$_2$ (5%) (A lot of NO$_2$ remains adsorbed!)

RED: genuine NO$_3$ reaction

BLUE: complication as a consequence of the presence of NO$_2$.
Steady State Uptake Coefficient for NO₃ on decane soot: extrapolation to ambient concentrations enabled by known rate law

Uptake coefficient γ_{ss} of NO₃ as a function of [NO₃] (orifice diameter = 8 mm): NO₃ on black (full triangles) and gray soot (open circles).
CONCLUSIONS: NO$_3$ - Soot

- Most of lost NO$_3$ remains adsorbed on soot
- Yield of NO is 12 (gray) -17 % (black) soot
- Adsorbed NO$_3$ leads to N$_2$O$_5$ formation in the gas phase with excess NO$_2$
- Small yield of HNO$_3$
- Large γ @ [NO$_3$] \Rightarrow 0 (ambient conditions: hundred ppt at night)
- Renoxification mechanism: NO$_y$ \Rightarrow NO$_x$
- Soot substrate is partaking in the reaction
Reaction Mechanism: $\text{N}_2\text{O}_5 + \text{Decane Soot}$

- $\text{N}_2\text{O}_5 + \{\text{C}\} \rightarrow \text{NO} + \text{NO}_2 + \{\text{C}\cdot\text{O}_2\}$ Redox reaction
- $\text{N}_2\text{O}_5 + \{\text{H}_2\text{O}\} \rightarrow 2\ \text{HNO}_3$ heterogeneous Hydrolysis reaction – surprisingly SLOW!

Mechanism:

\[
\text{N}_2\text{O}_5(\text{ads}) + \{\text{C}\} \rightarrow \text{N}_2\text{O}_3(\text{ads}) + \{\text{C}\cdot\text{O}_2\}
\]

\[
\text{N}_2\text{O}_3(\text{ads}) + \rightarrow \text{NO} + \text{NO}_2
\]

equimolar amounts of NO and NO$_2$

approaching 100% at low concentration.
Steady State Uptake Coefficient for N_2O_5 on Decane Soot: Importance of Rate Law !!!

Uptake coefficient γ_{ss} of N_2O_5 as a function of $[\text{N}_2\text{O}_5]$: N_2O_5 on black (circles) and gray soot (open squares). For all measurements we used the 8 mm orifice diameter except for the point marked by the arrow where a 4 mm orifice diameter has been used.
CONCLUSIONS: N_2O_5 - Soot

- Hydrolysis (HNO_3) and Redox (NO) reaction are concurrent and depend on the type of soot. Redox reaction occurs until exhaustion of redox reactive sites.
- Reaction products are equimolar NO + NO$_2$. Relative yields depend on type of carbon substrate. No NO$_3$ observed in the gas phase.
- Renoxification Mechanism, soot substrate is reacting
- Large γ value (roughly 10 times lower than for NO$_3$)
Reaction Mechanism for HNO₃ + Soot

- \(2\text{HNO}_3 \rightarrow \{\text{N}_2\text{O}_5\}\)
 Hypothesis
- \(\{\text{N}_2\text{O}_5\} \rightarrow \{\text{NO}_2\} + \{\text{NO}_3\}\)
 Surface decomposition
- \(\text{HNO}_3 \rightarrow \{\text{C-H}\}_\text{red} \rightarrow \{\text{HONO}\} + \{\text{C}\cdot\text{O}_2\}_\text{ox}\)
 Reduction of HNO₃ on rich flame (gray) soot (NO₂!!)
- \(\{\text{HONO}\} \rightarrow \text{HONO}\)
 gray soot (rich combustion)
- \(2\{\text{HONO}\} \rightarrow \{\text{H}_2\text{O}\} + \{\text{N}_2\text{O}_3\} \rightarrow \text{NO} + \{\text{NO}_2\}\)
 black soot (lean combustion)

In addition:
- \(\text{NO} + \{\text{HNO}_3\} \rightarrow \text{HONO} + \{\text{NO}_2\}\)
 gray soot (rich or stoichiometric flame): Supports adsorbed HNO₃
- \(\text{HNO}_3 + \{\text{HONO}\} \rightarrow 2\{\text{NO}_2\} + \{\text{H}_2\text{O}\}\)
 High surface coverage: Supports adsorbed HONO
- \(\{\text{NO}_2\} + \{\text{C-H}\}_\text{red} \rightarrow \text{NO} + \{\text{C}\}_\text{ox}\)
 secondary reaction of NO₂
CONCLUSIONS: HNO$_3$ - Soot

• Reaction products depend on type of soot

• X-tremes: amorphous carbon FW2 (channel black), lean flame soot (decane): NO, small amounts of NO$_2$. hexane, decane soot from rich flame: HONO exclusively.

• Evidence for adsorbed HNO$_3$, HONO. N$_2$O$_5$??

• Renoxification – atmospheric significance: ratio [NO$_y$] / [NO$_x$] or [HNO$_3$] / [NO$_x$] is overpredicted by photochemical transport (CRT) models. Models “need” more NO$_x$.