Multi-centre health effect studies on inhaled combustion derived (nano)particles in rats and humans

Miriam E. Gerlofs-Nijland
RIVM Bilthoven, The Netherlands
Adverse health effects of PM

Epidemiology

• Shortening of life expectancy
• Impaired lung development of otherwise healthy children living near a freeway

In vivo studies

• Emissions from highways result in inflammation of the lung and cardiovascular changes
Routes of exposure to (nano)particles

Figuur 1.21 - Ademhalingsstelsel
Toxicokinetics of PM

Particles

Brain
Nose
Lung
Blood
Spleen
Endothelium
Liver
Heart
Atherogenic plaques

Gut

Courtesy K. Donaldson
Controlled diesel engine exhaust studies – volunteers and rats

Rat studies
1. Sub-chronic exposure (4 weeks; 150 µg/m³)
2. Acute exposure – time series (2 hours; 1.9 mg/m³)
3. Acute exposure – myography (2 hours; 300 µg/m³)
4. Acute exposure – vagus nerve (6 hours 4.9 mg/m³)

Human volunteers
• Acute exposure - plethysmography (2 hours; 300 µg/m³)
• Acute exposure - QEEG (1 hour; 300 µg/m³)
Rat study: Sub-chronic exposure

• Exposure
 - Male Fisher F344 rats (15-16 weeks)
 - Ozone exposure 0.4 ppm for 12 hours
 - 4 weeks; 5 days/week; 6 hours/day
 - 150 µg/m³ diesel engine exhaust
 - Nose-only
 - Characterisation (mass, number, size distribution, sulphate, nitrate, XRF, EC/OC, LPS, volatile organic components)

• Effect assessment
 - 24 hours post-exposure
 - Bronchoalveolar lavage fluid (BALF), blood, tissues
 - Oxidative stress, inflammation, tissue damage
Rat study: Sub-chronic exposure Summary

• Exposure to diesel engine exhaust resulted in an oxidative stress response and impaired fibrinolysis and coagulation

• No inflammation or changes in vascular function
Rat study: Acute exposure – time series Design

• Exposure
 - Male Fisher F344 rats (9 weeks old)
 - 1.9 mg/m³ diesel engine exhaust
 - 2 hours
 - Nose-only
 - Characterisation (mass, number, size distribution, sulphate, nitrate, XRF, EC/OC, volatile organic components)

• Effect assessment
 - 4, 18, 24, 48, and 72 hours post-exposure
 - Bronchoalveolar lavage fluid (BALF), blood, tissues
 - Oxidative stress, inflammation, tissue damage
Rat study: Acute exposure – time series

- Investigate the effect of diesel engine exhaust particles on oxidative stress markers in a time-series study.
Rat study: Acute exposure – time series
Summary

• Exposure to diesel engine exhaust resulted in a time-dependent oxidative stress reaction, followed by an inflammatory response

• Oxidative stress is preceded by a procoagulant reaction in the blood as indicated by concurrent increases in TF activity and the amount of trombin generation
Human volunteers: Acute exposure - QEEG

Inhalation UFP

Irritant receptors

Translocation of NP

Soluble Components, NP

QEEG

VR

HRV

Courtesy: Paul Borm Centre of Expertise in Life Sciences (CEL)

11th ETH-Conference on Combustion Generated Nanoparticles, 2007
Miriam Gerlofs-Nijland et al.
Study in Umea: diesel exhaust (300 ug/m3)
Dr. Thomas Sandström, Dr. Anders Blomberg

Random order

<table>
<thead>
<tr>
<th>Diesel</th>
<th>Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparation (30 min)</td>
<td>Exposure (60 min)</td>
</tr>
<tr>
<td>Post exposure (60 min)</td>
<td></td>
</tr>
</tbody>
</table>

11th ETH-Conference on Combustion Generated Nanoparticles, 2007
Miriam Gerlofs-Nijland et al.
Effect of diesel engine exhaust on brain function

During exposure

5'

55'

Post exposure

5'

55'

Sham exposure

5'

55'

Sham post

5'

55'
Human volunteers: Acute exposure – QEEG Summary

• Exposure to diesel engine exhaust influences brain activity

• Physiological meaning however in this context largely unknown
Conclusions

• Automotive emission cannot only cause pulmonary but also systemic effects. The cardiovascular system and the blood are important targets, and also the brain may be directly affected.

• The toxicity may not only be caused by the particles themselves, but can also be caused by chemicals on the surface of particles.
Recommendations

• Impact of exhaust aftertreatment devices such as catalyst and particle traps on the toxicity of the complex mixture is largely unknown

• Impact of new (bio)fuels needs to be investigated for the impact on human health and the environment
Acknowledgements

Flemming Cassee
John Boere
Daan Leseman
Paul Fokkens
Ingeborg Kooter

Mark Miller
Rodger Duffin
Nick Mills
Ken Donaldson
Dave Newby

Paul Borm
Ludo van Etten
Björn Cruts

Arezoo Campbell

11th ETH-Conference on Combustion Generated Nanoparticles, 2007
Miriam Gerlofs-Nijland et al.