Performance of HORIBA-SPCS in the PMP LDD ILCE

Rahman Montajir, Asano Ichiro, Takeshi Kusaka, HORIBA Ltd, Japan

Qiang Wei
HORIBA Instrument Inc. USA
Acknowledgement

Dr. Y. Goto
National Traffic Safety and Environment Laboratory

J. Andersson
RICARDO Consulting Engineers

Dr. P. Dilara
Joint Research Center
Motivation of Development

Conventional PM Measurement
- Mass Measurement is approaching to limit
- Variation of Measurement is very high

PMP Background
- Alternative/Improvement of Mass Measurement
- Considering danger of Nano-Particles

ECE Draft Regulation from PMP
- Number Counting of Particles
- (Keeping Mass Measurement Active)
PMP Recommended System

Dilution Air

PND_2: Cold Dilution
PND_1: Hot Dilution

CPC

PNC

Pre-classifier

Pump

Evaporation

Stable

Unstable

CVS Tunnel

@25C

@320C

@150C

Explore the future

© 2006 HORIBA, Ltd. All rights reserved.
SPCS Flow Schematic

Sample

@150°C

Dil Air

FM-1

PND1

FM-2

EU

@320°C

PND2

CPC

@Room Temp

MFC

Dil

Air

Dil

Air

MFC

MFC

MFC

Explore the future

© 2006 HORIBA, Ltd. All rights reserved.
ETH 2005

SAE Paper 2006-01-0864

SAE Paper 2006-01-0865

JSAE Paper 20065044
Basic Performances
In Brief
Penetration of Solid Particles

Penetration = \frac{\text{Concentration after SPCS} \times \text{DR}}{\text{Raw Concentration Before SPCS}} \times 100

- **PMP >90%**
- **Particle Loss <3%**
- **Penetration >97%**
Dilution Ratio Check with C_3H_8

Actual DF = \frac{\text{Raw Concentration (C}_3\text{H}_8)}{\text{Diluted Conc. - Background}}

Error in DF = \frac{\text{Ref. DF} - \text{Act. DF}}{\text{Ref. DF}} \times 100

PMP Recommendation:
- Ref. DF
- Act. DF

< 2% DF Error <6%

Explore the future
HORIBA

© 2006 HORIBA, Ltd. All rights reserved.
Removal of 50nm C40 Particles

Evaporator

99% Removal

EU: OFF

Removal > 99%

EU: ON

25 °C

320 °C

Particle Number

Time sec
Linearity of Counter

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Particle Only</th>
<th>Reference</th>
<th>HORIBA-SPCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>7200</td>
<td>7200</td>
<td>7200</td>
</tr>
<tr>
<td>80%</td>
<td>5760</td>
<td>5757</td>
<td>5775</td>
</tr>
<tr>
<td>60%</td>
<td>4320</td>
<td>4317</td>
<td>4300</td>
</tr>
<tr>
<td>50%</td>
<td>3600</td>
<td>3598</td>
<td>3580</td>
</tr>
<tr>
<td>40%</td>
<td>2880</td>
<td>2877</td>
<td>2860</td>
</tr>
<tr>
<td>30%</td>
<td>2160</td>
<td>2164</td>
<td>2155</td>
</tr>
<tr>
<td>20%</td>
<td>1440</td>
<td>1445</td>
<td>1435</td>
</tr>
<tr>
<td>10%</td>
<td>720</td>
<td>728</td>
<td>720</td>
</tr>
<tr>
<td>0%</td>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Formula:

\[y = 0.994x - 33.463 \]

\[R^2 = 0.9997 \]

Graph:

- **Good linearity**
- **Reference Concentration**
- **CPC Concentration**

Legend:
- **Calculated**
- **Actual**
Test Vehicles

<table>
<thead>
<tr>
<th>Engine</th>
<th>Swept Vol.</th>
<th>After Treatment system</th>
<th>Mileage</th>
<th>Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>GV TC-DI Diesel</td>
<td>2.0 L</td>
<td>SiC + FBC</td>
<td>2898 km</td>
<td>Manual 6</td>
</tr>
<tr>
<td>AV-1 TC-DI Diesel</td>
<td>2.0 L</td>
<td>DPF + DOC</td>
<td>2140 km</td>
<td>Manual 5</td>
</tr>
<tr>
<td>AV-2 NA-DI Gasoline</td>
<td>3.0 L</td>
<td>TWC + NRC</td>
<td>9317 km</td>
<td>Automatic</td>
</tr>
</tbody>
</table>
Real Time Emission from GC

Golden Vehicle
NEDC Mode

Measured by SPCS

Highly Repeatable

Golden Vehicle
NEDC Mode

Explore the future
Particle Emission Rate = 100 \times \sum_{0}^{T=t} N / \sum_{0}^{T=1200} N

Golden Vehicle
NEDC Mode

Explore the future
© 2006 HORIBA, Ltd. All rights reserved.
Test under JC08 Driving Mode

Golden Vehicle

Highly Repeatable

Explore the future

© 2006 HORIBA, Ltd. All rights reserved.
Particle Emission Rate

GDI Vehicle
NEDC Mode

![Graph showing particle emission rate over time for a GDI vehicle in NEDC mode.](image)
Repeatability of PM Mass

Test No.

PM gm/km

GV

AV-1

AV-2

PM gm/km

GV

AV-1

AV-2

COV (%)

Explore the future

© 2006 HORIBA, Ltd. All rights reserved.
Golden vehicle driven under NEDC mode
Co-Efficient of Variation

![Bar Chart]

<table>
<thead>
<tr>
<th></th>
<th>GPMS</th>
<th>SPCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>GV</td>
<td>11.8%</td>
<td>21.2%</td>
</tr>
<tr>
<td>AV-2</td>
<td>6.8%</td>
<td></td>
</tr>
<tr>
<td>AV-1</td>
<td>3.6%</td>
<td></td>
</tr>
<tr>
<td>Coefficient of Variance</td>
<td>32.9%</td>
<td>7.1%</td>
</tr>
</tbody>
</table>
Conclusions

A solid particle counting system has been developed according to PMP recommendation.

The SPCS shows excellent sensitivity and repeatability for vehicle test.

The SPCS exhibits over 97% penetration for solid particles and error in dilution ratios less than ± 6%.

The system participated to the LDD_ILCE@NTSEL successfully.

Number counting of solid particles shows better repeatability than the conventional gravimetric mass measurement if the car is conditioned appropriately.
Thanking you

Explore the future

HORIBA Ltd.