Meteorologically adjusted long-term trends (1991 to 2004) of PM10 in Switzerland

Christoph Hueglin¹, Carlos Ordóñez²,³, Stephan Henne¹, André S. H. Prévôt², Brigitte Buchmann⁴

¹ Air Pollution/Environmental Technology Laboratory, Empa, Duebendorf, Switzerland
² Laboratory of Atmospheric Chemistry, Paul Scherrer Institut (PSI), Villigen, Switzerland
³ Laboratoire d’Aerologie, UMR5560, Toulouse, France

INTRODUCTION

Ambient particulate matter (PM) is of great concern because of their known adverse effects on human health. As a consequence, air quality standards for PM have been implemented in many countries. In Switzerland, daily (50µg/m³) and annual standards (20µg/m³) for PM10 were promulgated in 1998. A large part of the Swiss population live in an area where the annual standard for PM10 is exceeded [1]. Violation of the daily standard mainly occurs during high-pressure weather conditions in winter, when vertical mixing of ground-level air masses is reduced.

Analysis of the long-term trends of air pollutants is a well established approach to assess the impact of emission control strategies. However, meteorological conditions, seasonal variations and weekly cycles can have a strong influence on pollutant concentrations and can easily mask long-term changes. The effect of these influencing factors should therefore be removed before long-term trends are estimated. In this work, a regression modelling approach is used to estimate the meteorologically adjusted long-term trends of PM10 at thirteen sites in Switzerland during the period from 1991 to 2004.

METHOD

Daily PM10 data from the Swiss national air pollution monitoring network (NABEL) are used in this study. Up to 1997, the mass concentration of total suspended particulates (TSP) was measured instead of PM10. However, the TSP concentrations were converted into PM10 by scaling with a factor that was determined from parallel measurements of TSP and PM10 during the whole year of 1997. Meteorological data originated from NABEL and from ANETZ stations operated by MeteoSwiss. Additional explanatory variables representing the vertical stability of the troposphere, the frontal passages and the synoptic situation were derived from radio soundings taken in Payerne and Milan and the Alpine Weather Statistics [2].

It is assumed that the PM10 time series can be represented as the sum of a long-term component, a seasonal cycle, a weekly cycle, and important meteorological variables. A generalized additive regression model is used to estimate the association between the daily mean PM10 concentration and the explanatory variables. Generalized additive models are used because of its capability to represent nonlinear relationships between PM10 and influencing variables. Transformation of daily PM10 concentrations into their logarithms was necessary to obtain residuals that are Gaussian distributed with constant variance. However, meteorologically adjusted annual PM10 values can easily be derived from the estimated model parameters.

RESULTS AND CONCLUSIONS

The specified models are capable to explain 54 to 69% of the variance of ln(PM10). Meteorological variables with a significant influence on ln(PM10) are temperature, wind speed, precipitation, relative humidity, radiation, atmospheric pressure, as well as sunshine duration, number of days after frontal passage, vertical gradient of potential temperature, and the convective boundary layer height. A description of the latter set of variables is given in [3].

Meteorology adjusted annual PM10 in Switzerland are linearly decreasing until the end of the 1990’s, since then they are constant. From 1991 to the end of the 1990’s, negative trends of about -2µg/(m³ yr) are obtained at kerbside sites. At urban and suburban sites as well as at rural sites, the observed PM10 reductions are smaller (about -1 µg/(m³ yr) and -0.5 µg/(m³ yr), respectively). This indicates that primary PM10 emission from road traffic was significantly reduced during this period. However, constant meteorologically ad-
justed PM10 levels during the last few years indicate that implementation of further reduction measures is necessary for a continuing reduction of the PM10 burden.

ACKNOWLEDGEMENTS
This work was performed in cooperation and with support from the Swiss Federal Office for the Environment (FOEN). The meteorological data from ANETZ stations and the soundings data were provided by MeteoSwiss.

REFERENCES
Meteorologically adjusted long-term trends (1991 to 2004) of PM10 in Switzerland

Christoph Hueglin1, Carlos Ordoñez2, , Stephan Henne1, André S. H. Prévo6, Brigitte Buchmann1
1 Air Pollution/Environmental Technology Laboratory, Empa, Duebendorf, Switzerland
2 Laboratory of Atmospheric Chemistry, Paul Scherrer Institut (PSI), Villigen, Switzerland
3 Laboratoire d’Aérologie, UMR5580, Toulouse, France

Introduction

Ambient particulate matter (PM) is of great concern because of their known adverse effects on human health. Switzerland is part of the Swiss Federal Competence Centre for Air, Water and Food (CAMA), to which the three study sites, PM10 and PM2.5, belong. The long-term weather conditions are characterized by a cold, dry winter and a warm, wet summer. The mountainous terrain leads to a complex orography, with a large variation in elevation and temperature. The climate is influenced by the North Atlantic Oscillation (NAO), which leads to a strong inter-annual variability in temperature and precipitation. The long-term PM10 data from the Swiss national air pollution monitoring network (NABEL) were used in this study. The NABEL network consists of 23 sites, located in urban, rural, and mountainous areas, with different exposure conditions. The data are used to study the long-term trends of PM10 and PM2.5 in Switzerland.

Method

Daily PM10 data from the Swiss national air pollution monitoring network (NABEL) were used in this study. Meteorological data originate from NABEL and from ANETZ stations operated by MeteoSwiss. Additional explanatory variables representing the vertical stability of the boundary layer, the frontal passages, and the synoptic situation were derived from radiosoundings taken in Payeone and Milan and the Alpine Weather Statistics [2].

It is assumed that the PM10 time series can be represented as the sum of a long-term component LT, a seasonal cycle S, a weekly cycle W, and an additional meteorological component M. A generalized additive regression model of the form

\[\ln(\text{PM10}_{\text{adj},i,t}) = \alpha + \sum_{j=1}^{2} \beta_{j} \cdot \text{LT}_{i,j} + \gamma_{j} (S_{i} + \sum_{k=1}^{n} W_{k, i,j}) + \sum_{j=1}^{m} \gamma_{j} (M_{j, i}) + e_{i} \]

is used. The terms in above model equation denote the following:

- \(\text{PM10}_{\text{adj},i,t} \): meteorology adjusted PM10 concentration at day t
- \(\alpha \): model intercept
- \(\text{LT}_{i,j} \): indicator for the year of measurement. \(\text{LT}_{i,1} = 1 \) when day t is in the 1st year, otherwise \(\text{LT}_{i,2} = 0 \)
- \(\beta_{j} \): effect of j-th year on \(\text{PM10}_{\text{adj},i,t} \)
- \(\gamma_{j} \): nonparametric function that models the relationship between \(\text{PM10}_{\text{adj},i,t} \) and season, represented here by the month of the year
- \(W_{k, i,j} \): indicator for the day of week. \(W_{k, i,j} = 1 \) when day t corresponds to the k-th day of week, otherwise \(W_{k, i,j} = 0 \)
- \(\gamma_{j} \): effect of j-th day of week on \(\text{PM10}_{\text{adj},i,t} \)
- \(\gamma_{j} \): nonparametric function that models the relationship between \(\text{PM10}_{\text{adj},i,t} \) and meteorological variables

Transformation of \(\text{PM10}_{\text{adj},i,t} \) back into concentration units leads to a multiplicative model. The \(\exp(\cdot) \) are then factors representing the average effect of year i on \(\text{PM10}_{\text{adj},i,t} \). For comparison with the observed annual PM10 values, \(\text{PM10}_{\text{adj},i,1991-2004} \), meteorologically adjusted annual PM10 are expressed as

\[\text{PM10}_{\text{adj},i} = \exp(\alpha) \cdot \frac{\sum_{j=1}^{2} \text{PM10}_{\text{adj},j} \cdot \sum_{k=1}^{n} \exp(\gamma_{j})}{\sum_{j=1}^{m} \exp(\gamma_{j})} \]

Use of generalized additive regression to model \(\text{PM10}_{\text{adj}} \) was enabled to explain 54 to 69% of the variance of \(\text{PM10}_{\text{adj}} \) (Table 1). Meteorological variables with a significant influence on \(\text{PM10}_{\text{adj}} \) are temperature, wind speed, precipitation, relative humidity, radiation, atmospheric pressure, as well as sunshine duration, number of days after frontal passage, vertical gradient of potential temperature, and the convective boundary layer height. A description of the latter set of variables is given in [3].

Results

Figure 1: Sites and site types of the Swiss national air pollution monitoring network NABEL.

Table 1: Summary of the trend estimations for meteorology adjusted PM10 from 1991-2004 at different sites and site types of the NABEL network.

<table>
<thead>
<tr>
<th>Site Type</th>
<th>Trend 1</th>
<th>Trend 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban, kerbside</td>
<td>-2.38 ± 0.86</td>
<td>-2.78 ± 1.20</td>
</tr>
<tr>
<td>Rural, above 1000 m asl</td>
<td>-0.89 ± 0.28</td>
<td>-0.89 ± 0.28</td>
</tr>
<tr>
<td>Rural, below 1000 m asl</td>
<td>-0.89 ± 0.28</td>
<td>-0.89 ± 0.28</td>
</tr>
</tbody>
</table>

Conclusions

Meteorologically adjusted PM10 levels show a reduced year-to-year variability compared to measured PM10 levels. The high PM10 levels during the extremely dry and warm year 2003 are reduced to usual levels after meteorological adjustment. However, there is still some year-to-year variability the models cannot account for.

- In Switzerland, PM10 levels were constantly decreasing during the 1990s.
- In urban and suburban sites, PM10 levels were about -2μg/(m² yr).
- In rural areas, PM10 levels were about -1μg/(m² yr).
- Since 2000, PM10 is constant at too high levels: Implementation of further reduction measures is needed.

References