The Fate of Black Carbon in the Atmosphere: Rapid Removal by Wet Deposition after Aging

J. Cozic
Laboratory of Atmospheric Chemistry (Paul Scherrer Institute)
Radiative forcing by Tropospheric aerosol

Direct Effect: Scattering and absorption of incoming sunlight by aerosol particles

Indirect Effect: The number of CCNs influences the cloud droplet size and thereby changes the cloud albedo and lifetime

Organics
SO₂
BC
Dust
Sea salt

Aerosol particles

Wood
Industries
Traffic
Biomass burning
Ocean

CCN and IN
Indirect effect of carbonaceous particles: Ship tracks

Ship tracks on the East Atlantic

Aerosol particles emitted by ships (soot particles with a high sulfur content) act as CCN and form clouds and enhance cloud reflectivity.
The global mean radiative forcing of the climate system for the year 2000, relative to 1750.

Source: www.ipcc.ch
Pathways of the Traditional Warm Indirect Aerosol Effect and the Glaciation Indirect Aerosol Effect

Cloud droplets → Cloud cond. nuclei → Aerosol particles → Human activity

Cloud albedo

Cloud cover and lifetime

Precipitation

Mixed phase cloud hydrometeors

Ice crystals

Ice nuclei

1st Twomey effect

2nd Twomey effect

Lohmann, GRL, 2002
Radiative forcing by BC

Direct effect:
Absorption of incoming sunlight

Indirect effect:
- Incorporation of BC into cloud droplets and ice crystals
 (wet deposition of BC → decreasing absorption)
 (modification of cloud optical properties)

Semi direct effect:
Absorption of solar radiation by soot may cause evaporation of cloud droplets
Jungfraujoch 3580 m a.s.l.

- GAW station
- Few local emissions
- Good infrastructure
- Free troposphere
- Aged aerosol
- 40% cloud occurrence
BC seasonality

Winter (November-December-January) **Summer** (June-July-August)

<table>
<thead>
<tr>
<th>Season</th>
<th>BC Concentration at 880 nm (ng/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter (Nov-Dec-Jan)</td>
<td>BC = 18.9 ng/m³</td>
</tr>
<tr>
<td>Summer (Jun-Jul-Aug)</td>
<td>BC = 145 ng/m³</td>
</tr>
<tr>
<td></td>
<td>BC (Jun-Jul-Aug) = 101.7 ng/m³</td>
</tr>
</tbody>
</table>
BC mass fraction in PM1

OM = 1.9 OC for summer and winter

Winter & Spring 2004 PM1
- **OM:** Predominantly from anthropogenic sources
- **SO4:** Mainly anthropogenic
- **NO3:** Mainly anthropogenic
- **NH4:** Anthropogenic
- **BC:** Anthropogenic
- **None determined**

PM1 mass concentration = 1.4 µg/m³
BC mass concentration = 84 ng/m³

Summer 2005 PM1
- **OM:**
- **SO4:** Mainly anthropogenic
- **NO3:** Mainly anthropogenic
- **NH4:** Anthropogenic
- **BC:** Anthropogenic
- **None determined**

PM1 mass concentration = 3.4 µg/m³
BC mass concentration = 89 ng/m³
Atmospheric aging processes change the mixing state, important for e.g. modeling the radiative forcing of black carbon.

External Mixture
- BC particles are separated from scattering particles

Coated Internal Mixture
- BC particles are coated with scattering material

Internal Mixture
- \((\text{NH}_4)_2\text{SO}_4\)
- SOA

Coated Internal Mixture
- Coated BC particles
- Scattering material
Inlets

Ice CVI inlet:
removes:
- droplets
- int. particles
- large ice crystals
(Size: 5-30 μm)

Interstitial inlet:
(no activated particles)
removes:
- droplets
- ice crystals
(Size < 2μm)

Total inlet:
(all particles, including activated ones)
heated inlet

Ice residuals
Laboratory (dry aerosol)

Free particles
All particles
BC measurements:
- **MAAP** = Multi Angle Absorption Photometer
- **PSAP** = Particle Soot Absorption Photometer

Chemical composition measurements:
- **AMS** = Aerosol Mass Spectrometer

Cloud microphysics:
- **PVM** = Particulate Volume Monitor
- **CPI** = Cloud Particle Imager

Size distribution:
- **SMPS** = Scanning Mobility Particle Sizers
Scavenging of Black Carbon in liquid cloud

Fraction of BC aerosol that is incorporated into a cloud droplet or an ice crystal

\[
\text{Scavenged fraction} = \frac{C_{\text{cloud}}}{C_{\text{total}}} = \frac{C_{\text{tot}} - C_{\text{int}}}{C_{\text{total}}}
\]
Scavenging of Black Carbon in mixed phase cloud

Fraction of BC aerosol that is incorporated into a cloud droplet or an ice crystal

\[
\text{Scavenged fraction} = \frac{C_{\text{cloud}}}{C_{\text{total}}} = \frac{C_{\text{tot}} - C_{\text{int}}}{C_{\text{total}}}
\]

Nearly no scavenged fraction
Scavenged BC fraction evolution with temperature

< -20°C: cloud exists mainly of ice crystals (low scavenging)

> -20°C: ~ of liquid droplet number (~ of BC scavenging)

- BC scavenged fraction is 61% at T>-5°C
Evolution of particles in cloud: Bergeron-Findeisen process

Saturation Vapor Pressure (SVP) difference: $\text{SVP (ice)} < \text{SVP (liquid)}$

\Rightarrow Flux of water vapor from liquid droplets to ice crystals
Ice CVI inlet:
removes:
- droplets
- int. particles
- large ice crystals

(Size: 5-30 μm)

Total inlet:
(all particles, including activated ones)
heated inlet

Laboratory (dry aerosol)
Ice residuals mainly consisted of BC and refractory material (mineral dust, ...)

Ice nuclei chemical composition

AMS data from Max-Planck Institut Mainz

Ice residuals

Total

<table>
<thead>
<tr>
<th>Component</th>
<th>AMS</th>
<th>SMPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonium</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulphate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AMS data from Max-Planck Institut Mainz
Enrichment of BC in small ice crystals (most points above line 1:1)
Conclusions

Aging processes result in coating of BC with soluble components
✓ Internal mixture of JFJ aerosol
✓ Influence on hygroscopic properties of soot particles

In liquid clouds
✓ BC is incorporated into cloud droplets as bulk aerosol
✓ 60% of BC mass is incorporated into cloud droplets and ice crystals (wet deposition of BC increases)

In mixed-phase clouds
✓ Incorporation of BC is considerably lower (Bergeron-Findeisen process)
✓ BC is enriched by 20% in the ice phase (influence on cloud optical properties)
✓ Ice nuclei mainly consist of BC and refractory material

Summary:
Incorporation of BC into cloud droplets and ice crystals for an aged aerosol
✓ Increases the wet deposition of BC (influence on lifetime of soot particles)
✓ Influence the optical properties of cloud by possibly increasing the number of CCN and by acting as IN
Thank you for your attention

Acknowledgements:
PSI: Bart Verheggen
 Ernest Weingartner
 Urs Baltensperger
IFT: Stephan Mertes
MPI Mainz: Johannes Schneider
 Saskia Walter