DPF System S-Cube (S³ : Soot Solving System)
- MLF Volumetric Filtration and Active Regeneration

New Generation in Diesel Particulate Filter

In-Gweon Lim
CATech Inc.
(Clean Air Technology)
www.CATech.co.kr

Dept. of Mechanical Eng.
Myong-Ji Univ.
KOREA

Japan Certification (2004. 1.)
KT Mark Award (2004. 6.)
Object

Introduction

- CATech Inc.

- DPF system S-Cube
Profile of CATech Inc.

“Clean Air for our Descendants”

Company Vision

Leading Company with Innovative Technologies in Energy / Environmental Application for Clean Air

Main Product / Technology

Diesel Particulate Filter System (DPF)

- Address: San 38-2, Nam-dong, Yong-In, Kyunggi-do, 449-728, Korea
- URL: www.CATech.co.kr
- E-Mail: iglim@catech.co.kr
- Tel/Fax: +82-31-336-6436 / +82-31-336-6434
Facts on structured ceramic monolith filters

Structured Ceramic monolith filter

Typical Active DPF system
(Fig. from DieselNet)

Performance	High reduction efficiency with ~100% for soot and 80~95% for PM
Durability Problem	Thermal stress and crack propagation during regeneration process due to non-homogeneous filtration and heating
	Special regeneration algorithm, essential for active DPF system (longer and slow regeneration)
	Surface filtration method, results in rapid pressure increase
Price and maintenance	High price (with catalyst)
	Periodic cleaning and replacement of filter due to ash accumulation
DPF system with catalyst

- **General consent**
 - Durability problem, related to structured monolith filters, is occurred by *periodic regeneration process in active DPF system*, even with specially prepared regeneration algorithm and flow control valves.
 - Thus passive DPF system, such as continuous regeneration system by catalyst, may be the solution.

- **Drawbacks**
 - (a) ULSD
 - (b) Limitations
 - Exhaust temperature
 - PM emission level
 - Installation location
 - (c) High price

New DPF system is often sought.
Need for new DPF system with different concept

.... specially in Korea

- Demonstration program in Korea
 - ‘97~’98 : 1,400 Garbage trucks in Seoul
 - 4 DPF systems using structures filters
 - Installed after severe certification processes
 - Failed

- 15 years research experience
 - “Flame propagation within porous ceramic medium”
 - Limit on durability with structured ceramics !!

- System price in Korea
 - Feasible and economical price
Imagine

Sand, Sand layer

Can it be used as DPF filter ?

.... Small granular chip can be used as filtering material for Nano-size DPM ??

Let us change DPF filter concept ...
Introduction of S-Cube:

Active DPF system,
Newly Certified
and Commercialized

S^3 (S-Cube : Soot Solving System)

Japan Certified (2004. 1.)

KT Mark Award (2004. 6.)

Excellent Korean Technology
Volumetric filtration of Diesel PM by MLF (Multi-Layered Filter) of Ceramic Granular Chip and its Integration into Active DPF system

MLF (Multi Layered Filter)
- Innovative MLF design method and manufacturing
- Reduction over 95~100% for soot and 70~99% for PM
- High design flexibility on filter shape and efficiency
- Unique solution for filter durability problem
- Highly economical DPF system due to low filter cost
- Favorable and slow pressure increase rate
- Large loading capacity, regeneration at 300~700 Km driving
- No limitations on fuel, exhaust temperature and PM loading
- Muffler function

Regenerator (In-line burner)
- Quick regeneration within 6~15 min.
- Use only exhaust gas as oxidizer
- ~350 cc fuel for each regeneration

ECU & Actuators
- Independent system
- Optimized software
MLF - Filtration Mechanism

Back pressure increase \(\propto \) due to filter structure + due to PM filtration

Ceramic filter (Surface filter)
- mean pore size: \(\sim 12.5 \ \mu m \)
- filter thickness: \(\sim 0.7 \ \text{mm} \)

\[\Delta P \propto \text{mainly due to PM filtration} \]
\[\text{Steep increase with high PM filtration} \]

CATech MLF filter (Volumetric filtration)
- mean pore size: \(100 \sim 1,000 \ \mu m \)
- filter thickness: \(> 20 \ \text{mm} \)
- different chip size and thickness for layers

\[\Delta P \propto \text{mainly due to filter structure} \]
\[\text{Slow increase even with high PM filtration} \]
MLF - Filtration Efficiency

Overall Filter Efficiency \~ \frac{Layer \ Thickness(L)}{Pore \ Size \ (D_f)}
\~ Filtration by Interception + Filtration by Diffusion

Interception \~ \text{Particle Size} (d_p)

\begin{align*}
&\text{Surface filtration} \quad \leftrightarrow \quad \text{Mainly filtration by interception} \\
&\text{MLF filtration} \quad \leftrightarrow \quad \text{Filtration by both interception and diffusion}
\end{align*}

As the size of PM is reduced, it can be guessed that

\rightarrow \text{Filtration by Diffusion will be enhanced even with present MLF filter.}
\rightarrow \text{Thus it could be the solution for Nano-particle problem, which is difficult to expect from other structured (surface filtration type) filter systems.}
S-Cube : 4 years development

Filter with MLF type
(SC-060MB, ~7L)
- **D** = 26cm, **L**=45cm, 32Kg
- Annular type cylinders
- PM capacity : ~40 g/Reg.
S-Cube : DPF System – In-Line Burner Regeneration

Regeneration
- Every 300~700Km
- at engine idling
- manually starting
- ~6 min~15min.
- ~350cc Diesel fuel

- Engine
- Switch box
- Control Box
- ECU
- Fuel Tank
- Battery
- Fuel
- Engine Signal
Regeneration
- at engine stop
- 220vAC External power
- ~6.0 Kwh (60 min.)
MLF – Design Parameters

A. Design aspects
- Chip Size Distribution, Df
- Layer Thickness, L
- Filtration Area, (velocity \(u \))

B. Environmental aspects
- Particulate Size Distribution (dp)
- Temperature
- Engine displacement and RPM (velocity \(u \))
- Local/total filtered mass of particulates (porosity)

- Calculated local filtration rate for various sizes of particulate in layered clean filter at a typical flow condition.
MLF - Design

Design with Nano-size PM movement analysis

⇒ for filter surface area, thickness, pressure drop and efficiency.
- Pressure, P, increases with PM loading during real road driving.
- Mass of filtered PM, Ms, is calculated by pressure, RPM and temperatures.
- T_f and T_o represent temperatures before and after the filter, respectively.
- Vehicle: 4,330 cc NA ISUZU ELF truck - 0.5 g/kwh PM emission by Japan D-13 mode.
- Driving: In urban area of Tokyo.
Regeneration by In-line burner

Temp. at filter inlet is controlled with fuel pump duty.

Fuel penalty due to regeneration:
- ~ 350cc for each regeneration for SC-060MB DPF system (~7L Engine)
- If regeneration at every 350 Km with fuel mileage of 10Km/L vehicle → 1% fuel penalty.
S-Cube: Performance

* Official performance test data from Japan and Korea test centers

Test data at Tokyo Metropolitan Environment Research Institute

<table>
<thead>
<tr>
<th></th>
<th>CO (g/kWh)</th>
<th>HC (g/kWh)</th>
<th>NOx (g/kWh)</th>
<th>CO2 (g/kWh)</th>
<th>PM (g/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>装着前</td>
<td>3.33</td>
<td>0.21</td>
<td>4.21</td>
<td>1340</td>
<td>0.45</td>
</tr>
<tr>
<td>装着後</td>
<td>3.82</td>
<td>0.19</td>
<td>4.03</td>
<td>1360</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Japan D-13 mode: (PM 91 % ↓)

<table>
<thead>
<tr>
<th></th>
<th>CO (g/km)</th>
<th>HC (g/km)</th>
<th>NOx (g/km)</th>
<th>CO2 (g/km)</th>
<th>燃料消費率 (km/L)</th>
<th>粒子状物質 (g/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>装着前</td>
<td>0.61</td>
<td>0.12</td>
<td>0.90</td>
<td>258</td>
<td>10.1</td>
<td>0.05</td>
</tr>
<tr>
<td>装着後</td>
<td>0.68</td>
<td>0.13</td>
<td>0.88</td>
<td>266</td>
<td>9.80</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Japan 10・15 mode: (PM 85 % ↓)

Smoke test with load: (100 % ↓)

Smoke test by free acceleration: (100 % ↓)

* Power output reduction: less than 2% with D-13 mode test
S-Cube: Strength - Economical DPF system without any limitations

1. Free of durability problem
2. No limitation on fuel, exhaust temp., PM level
3. Solution for Nano-PM problem
4. Quick and intensive regeneration
5. Economical active DPF system
S-Cube : Drawback

1. Heavy and large :
 ~ due to the reason that to make same pressure level with other structured filters.

2. High CO/HC emission at the moment of burner start-up
 ~ plan to apply “Clean-up catalyst” to one of filter layers.
Product portfolio (Aug. 2004)

<table>
<thead>
<tr>
<th>Categorized by regeneration method</th>
</tr>
</thead>
<tbody>
<tr>
<td>• DPF system with In-line burner – exported to Japan retrofit market</td>
</tr>
<tr>
<td>• DPF system with electric heater regeneration (external electric power)</td>
</tr>
<tr>
<td>• DPF filter only on vehicle + external hot gas supplier (available in Dec. ’04)</td>
</tr>
</tbody>
</table>

Application

| Retrofit |
| OEM |
| Diesel generator |
| Construction engines and vehicles |
| Ship and locomotive engine |
MLF - High Technology Potential

- Solution to Nano-particle PM reduction due to diffusion filtration mechanism
- Economical and durability free filter system, sustainable to rapid and intense heating
- Various functional catalysts, applicable to each layer of MLF
- Design flexibility for various shape, efficiency and size
- Engineering potential for various applications such as locomotives and ship

Working with HMC (Hyundai Motor Company) for OEM

Reduction to small size with Continuous regeneration
Closest position to engine

HC-SCR + Plasma
→ Dual PM/NOx reduction system for retrofit
DPF retrofit market in Korea

- Starting on Jan. 2005
- Market size for DPF/DOC: ~1,200 million(USD) till 2012 (50% from Gov.)
- 150,000Km or 3 yr. Warranty
- Bus and trucks with high PM and (or) low temperature (~Euro-II)
- Expected DPF system price for 12L engine: ~about $6,500 (USD)

DPF Maker in Korea with products (2004. 8)

- CATech Inc. (Active type DPF)
- SK (CRT type DPF)
Thank you very much!

CATech Inc. is looking for best partner for Europe DPF market,....