CHEMICAL CHARACTERIZATION OF PARTICULATE MATTER EMISSIONS FROM A CATALYZED TRAP EQUIPPED NATURAL GAS FUELED TRANSIT BUS

Mridul Gautam, Sairam Thiagarajan, Tim Burlingame,
Scott Wayne, Dan Carder
Department of Mechanical and Aerospace Engineering
West Virginia University

Adewale Oshinuga
South Coast Air Quality Management District

Lisa Graham
Environment Canada

Ted Tadrous
Lubrizol

Howard Paris and Bob Kreeb
Booz Allen and Hamilton
Project Objectives

• Reduction of exhaust emissions from current (2001 ULEV compliant) natural gas fueled vehicles
 – Recognize the problem (PM/gaseous; regulated/unregulated)
 • Natural gas engine designs need to focus more on cylinder materials, design of ring packs, valve stem seals, etc., to minimize oil consumption.
 – Identify the nature of the problem by conducting a detailed speciation of the exhaust (Round 1)
 – Design an exhaust aftertreatment system to tackle specific pollutants
 – Install exhaust aftertreatment system on the vehicle and conduct another speciation study (Round 2)
 – Operate the vehicle in the field for 6 months and monitor performance.
 – Conduct speciation study after 6 months (Round 3)
Project Objectives

• Engine
 – Cummins C8.3G+ (6-cylinder, 8.3 liter, 280 hp@2400 rpm)
 – Certified with a catalyst for California ULEV levels
 • NOx: 1.53 g/bhp-hr
 • NMHC: 0.21 g/bhp-hr
 • Total PM: 0.008 g/bhp-hr
 • CO: 0.8 g/bhp-hr

• Vehicle
 – Orion, standard 40-foot, high-floor design

• Laboratory
 – WVU Transportable Laboratory with a dedicated “Clean Tunnel” with on-site GC
Chemical Characterization

– Particulate Matter
 • TPM, PM$_{10}$, PM$_{2.5}$, PM$_{1}$
– Volatile Organic Compounds
 • Low molecular weight alkanes and olefins (C$_2$ – C$_5$)
 • Low molecular weight aromatics (BTEX)
– Elemental & Organic Carbon
– PAHs and n-PAHs
– Hopanes and Stearanes
– Elemental Compounds
– Ionic Species
– Carbonyls
– PM Size Concentration and Distributions
Test Vehicle Installed On The Chassis Dynamometer
“Clean Tunnel” With Sampling Ports/Trains

PM$_1$ Cyclone

PM$_{2.5}$ Cyclone

PM$_{2.5}$ Cyclone (EC/OC)

PM$_{10}$ Cyclone

Total PM
PM Filter followed by an Oxidation Catalyst in the Transit Bus Exhaust System
WVU/Lubrizol-ECS
Catalyzed Filter and Oxidation Catalyst

• Diesel Particulate Filter
 – Silicon Carbide segmented honeycomb (11.25 in x 12 in)
 – 200 square CPI cell density
 – Pt coated on proprietary wash-coat for passive regeneration over duty cycles producing exhaust temperature 280°C - 320°C for >25% of the time

• Oxidation Catalyst
 – Cordierite monolith (10.5 in x 6 in)
 – 400 square CPI cell density
 – Pd coated on proprietary wash-coat
Tunnel Background (Round 1)

- **Data:** BG2_B
- **Model:** Gauss
- **Chi^2/DoF:** 101079652.46189
- **R^2:** 0.53704
- **y0:** 809.40262 ± 3129.09373
- **xc:** 65.20498 ± 2.48241
- **w:** 52.22772 ± 8.15302
- **A:** 2206882.03511 ± 467990.75733

Particle concentration dN/dlogDp (#/cm^3)

Particle diameter (nm)
Sunline Transit Bus Steady State Operation
20 Mph With Oxidation Catalyst (Round 1)

Data: SS 20mph with cat hot
Model: Gauss

- $\chi^2/\text{DoF} = 294888399.39383$
- $R^2 = 0.74812$
- $y_0 = 5318.76959 \pm 3234.95684$
- $x_c = 42.91572 \pm 0.95994$
- $w = 28.99202 \pm 2.35115$
- $A = 3266736.64037 \pm 313992.14651$

Data: SS 20mph with cat cold
Model: Gauss

- $\chi^2/\text{DoF} = 14102545157.70303$
- $R^2 = 0.86379$
- $y_0 = -3741.47652 \pm 26882.40612$
- $x_c = 47.34166 \pm 0.76992$
- $w = 36.18543 \pm 2.0348$
- $A = 41264889.31164 \pm 2966796.1965$
Tunnel Background (Round 2)

Particle Concentration $dN/d\log D_p$ (#/cm3)

Particle diameter (nm)

- Background 1
Sunline Transit Bus Steady State Operation 25 Mph with PM Filter Only – No Oxidation Catalyst (Round 2)

Steady State 25Mph Cold

Data: Steady State Cold
Model: Gauss

- \(\chi^2/\text{DoF} = 3572981174.48617 \)
- \(R^2 = 0.94352 \)
- \(y_0 = 12292.20008 \pm 7627.46749 \)
- \(x_c = 57.19985 \pm 0.39402 \)
- \(w = 25.32478 \pm 0.8411 \)
- \(A = 26114214.0915 \pm 875462.32399 \)

Steady State 25Mph Hot

Data: Steady State Hot
Model: Gauss

- \(\chi^2/\text{DoF} = 45250324274.3747 \)
- \(R^2 = 0.97051 \)
- \(y_0 = 124246.57048 \pm 25723.0407 \)
- \(x_c = 13.34646 \pm 0.05907 \)
- \(w = 5.24218 \pm 0.12387 \)
- \(A = 28190677.16038 \pm 655746.44917 \)
Sunline Transit Bus Steady State Operation 25 Mph with PM Filter and Oxidation Catalyst (Round 2)

Particle concentration $dN/d\log D_p$ (#/cm3)

Particle diameter (nm)

- Steady state 25Mph with Oxidation Catalyst and Trap
Comparison of Particle Size Distributions
LNG-fueled and Diesel-fueled Transit Buses

1999 Study

- Diesel fueled M11-1
- Diesel fueled M11-2
- LNG fueled L-10 -1
- LNG fueled L-10 -2
- LNG fueled L-10 -3

GMD ~ 30 nm (LNG)

GMD ~ 49 nm (Diesel)

M. Gautam and S. Mehta, West Virginia University

1999 Study
Sunline Transit Bus Transient Operation
Quad CBD; PM Filter Only (Round 2)

Normalized particle concentration N/dlog Dp (#/cm^3)

Time (sec)
Transit Bus Transient Operation Quad CBD; PM Filter and Oxidation Catalyst (Round 2)

Normalized concentration dN/dlog Dp (#/cc)

Time (sec)

18.8 nm
Transit Bus Transient Operation
Quad CBD; PM Filter Only (Round 2)

Normalized particle concentration dN/dlog

Dp (#/cm^3)

- 53.3 nm
Transit Bus Transient Operation
Quad CBD; PM Filter and Oxidation
Catalyst (Round 2)

Normalized particle concentration dN/dlog

Time (sec)

West Virginia University, Morgantown, WV 26506
Regulated Emissions

Bars are Average of 3 Replicate Runs
Total PM Emissions

Bars are Average of 3 Replicate Runs

- C8.3G+ (Without Oxy Cat)
- C8.3G+ (With Oxy Cat)
- C8.3G+ (WVU-Lubrizol Trap & Oxy Cat)
Methane and Non-Methane Hydrocarbons

<table>
<thead>
<tr>
<th></th>
<th>FIDHC</th>
<th>CH4</th>
<th>NMHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>C8.3G+ (No Cat)</td>
<td>21.90</td>
<td>20.56</td>
<td>0.54</td>
</tr>
<tr>
<td>C8.3G+ (With Cat)</td>
<td>15.80</td>
<td>14.94</td>
<td>0.13</td>
</tr>
<tr>
<td>C8.3G+ (With WVU-Lubrizol Trap & Cat)</td>
<td>11.80</td>
<td>10.00</td>
<td>1.14</td>
</tr>
<tr>
<td>C8.3G+ (WVU-Lubrizol Trap Only)</td>
<td>23.80</td>
<td>20.91</td>
<td>1.67</td>
</tr>
</tbody>
</table>

Bars are Average of 3 Replicate Runs.
Carbonyls

Formaldehyde acetaldehyde acetone propionaldehyde

Emissions, g/mile

C8.3G+ (Baseline)
C8.3G+ (With OEM Cat)
C8.3G+ (WVU-Lubrizol Trap & Cat)X100

West Virginia University, Morgantown, WV 26506
XRF Chemical Elements

C8.3G+ (with WVU-Lubrizol Trap & OC: Non-Detectable)

Bars are Average of 3 Replicate Runs

West Virginia University, Morgantown, WV 26506
Acknowledgements

Funding for the study was provided by:

• South Coast Air-Quality Management District
• The Gas Company