SOOT PARTICLE DEPOSITION AND OXIDATION IN NOVEL CATALYST STRUCTURES

A. MESSERER, E. DRONIA, U. PÖSCHL, R. NIESSNER

Institute of Hydrochemistry, Technical University of Munich,
Marchioninistr. 17, D-81377 Munich, Germany
Armin.Messerer@ch.tum.de, http://www.ch.tum.de/wasser/aerosol/messerer.htm

E. Jacob, D. Rothe
MAN Nutzfahrzeuge AG, Nürnberg

C. Knab, M. Mangold
Oberland Mangold, Garmisch-Partenkirchen

INTRODUCTION

Since conventional soot particle filter systems exhibit a significant increase in exhaust gas back pressure and are easily clogged by engine oil ashes, current research activities are focused on the development of filterless soot particle deposition structures [1]. First experiments confirmed the high potential of newly developed structures for efficient particle deposition. Detailed studies of the involved processes including thermophoresis are currently under way and are used to optimize the design and operating conditions. The reaction mechanisms and kinetics of soot particle oxidation by nitrogen oxides are also investigated for different deposition structures and types of soot under a wide range of experimental conditions relevant for modern diesel engine exhaust systems.

METHODS

For the investigation of the soot deposition mechanisms a novel model gas test bench was developed allowing the characterization of soot particulate deposition in specially designed flat bed reactor systems. With a flown through cross sectional area of 10 x 6 mm these reactors provide a high flexibility concerning the type of deposition structure, their length (74.5 to 290 mm), temperature conditions (25 to 450°C), model gas composition and flow velocity under laboratory scale conditions. Simulated hourly gas space velocities range between 10,000 and 200,000 h\(^{-1}\). The model soot aerosol was produced by spark discharge (PALAS GfG 1000). For the measurement of the size distribution of the soot aerosol before and after the deposition device a SMPS system was applied consisting of an electrostatic classifier (TSI EC 3071) and a condensation particle counter (TSI CPC 3025 A). Complex heat control devices were adopted to ensure isothermal sampling conditions at all sampling points to cancel out sampling losses mainly caused by thermophoresis. The soot deposition studies are followed by oxidation experiments of the soot
deposited on the structures in the flat bed reactors with mainly NO\textsubscript{2} in typical diesel engine exhaust gas conditions varying space velocity, temperatures and gas composition. Therefore it is possible to describe the oxidation kinetics of soot particles deposited under realistic flow conditions as they occur in novel particle deposition systems. The experiments with spark discharge soot are complemented by experiments with real diesel soot particles sampled at engine test benches.

RESULTS

Different kinds of stainless steel deposition structures were characterized concerning their deposition behaviour. Diffusion, impaction, interception and turbulent deposition are found to be the dominating deposition mechanisms. According to the type of structure the deposition efficiency is dependent on the soot loading (Figure 1) and therefore increases with time. Particle deposition was found to be significantly higher for structures which were homogeneously coated with micrometer sized steel spheres. Experiments at a heavy duty vehicle (HDV) engine test bench shows particle mass reduction of about 70% applying these structures in a silencer housing. With this exhaust gas aftertreatment system the particulate emissions were significantly below the EURO IV emission limit value of 20 mg/kWh in the ESC and 30 mg/kWh in the ETC test cycle. The maximum pressure drop was 101 mbar during the ESC test cycle which is far below the values reported from monolithic filter systems. Further engine test bench experiments showed no blow off effects and did not indicate any clogging behaviour as it was observed in tests with conventional diesel particulate filters.

![Figure 1: Particle deposition efficiency ε as a function of d_p in a novel catalyst structure.](image-url)
Oxidation experiments with real HDV soot deposited on the novel catalyst structures show a significant influence of the oxidation rate on the deposition structure, temperature and gas composition [2]. The differential rates of carbon mass consumption at 350°C were around 5 times as high as the ones at 300°C. The rates increased slightly with NO$_2$ concentration. Significant carbon consumption was already observed at concentrations as low as 65 ppm NO$_2$. Model calculations based on the kinetic rates derived from the experiments showed that soot oxidation under realistic exhaust gas conditions is sufficient for a continuous removal of diesel particulate matter deposited in the novel catalyst structures.

ACKNOWLEDGEMENT

This work is part of the project “Katalytisches System zur filterlosen kontinuierlichen Rußpartikelver- minderung für Fahrzeugdieselmotoren” supported by the Bayerische Forschungsstiftung, Munich.

REFERENCES

Soot Particle Deposition and Oxidation in Novel Catalyst Structures

A. Messerer1, D. Rothe1,2, R. Nießner1, U. Pöschl1, E. Jacob2, E. Dronia1, C. Knab3 and M. Mangold3

1 TU München, Institute of Hydrochemistry
2 MAN Nutzfahrzeuge AG, Nürnberg
3 Oberland Mangold, Garmisch-Partenkirchen
• Motivation
• Experimental Setup
• Particle Deposition
• Soot Oxidation
• Summary & Conclusion
PM-KAT® - A Novel Particle Removal System

Emission limit value:

<table>
<thead>
<tr>
<th>Year</th>
<th>ESC</th>
<th>ETC</th>
</tr>
</thead>
<tbody>
<tr>
<td>EURO III (2000)</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>EURO IV (2005)</td>
<td>40</td>
<td>80</td>
</tr>
<tr>
<td>EURO V (2008)</td>
<td>30</td>
<td>60</td>
</tr>
</tbody>
</table>

Aims:
1) Efficient PM removal
2) Low pressure drop
3) No clogging

(Jacob et al. Wiener Motoren Symposium 2002

Requirement: Low-emission engine (PM < 50 mg/kWh)
PM-KAT® - A Novel Particle Removal System

Preoxidation Pt catalyst:

\[2 \text{NO} + \text{O}_2 \leftrightarrow 2 \text{NO}_2 \]

PM deposition & oxidation:

\[[\text{C}] + 2 \text{NO}_2 \rightarrow \text{CO}_2 + 2 \text{NO} \]

\[[\text{C}] + \text{O}_2 \rightarrow \text{CO}_2 \]
Methodology

1) Development of particle deposition structures
2) Investigation of soot oxidation kinetics (diesel & model soot)
3) System optimization

Carbon mass balance:
\[
\frac{dm_C}{dt} = \bar{V} \cdot \varepsilon \cdot c_{m,C} - m_C \cdot k_{diff}
\]

Pseudo 1st order approach:
\[
k_{diff} = \frac{dm_C}{m_C dt}
\]
Experimental Setup - Model Catalytic System

- GfG 1000
- Gas Synthesis
- FBR
- FTIR
- SMPS
- Data Acquisition
- Process Control
Flat Bed Reactor (FBR)

- Easy to equip with deposition structures
- PID temperature control
- Macroscopic investigation of deposition pattern
- Microscopic investigation (SEM)
Soot Particle Deposition Investigations

Operating conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length [mm]</td>
<td>74.5</td>
<td>298</td>
</tr>
<tr>
<td>GSV [h⁻¹]</td>
<td>23,500</td>
<td>451,000</td>
</tr>
<tr>
<td>(v_C) [m s⁻¹]</td>
<td>1.4</td>
<td>18.8</td>
</tr>
<tr>
<td>T [°C]</td>
<td>25</td>
<td>400</td>
</tr>
<tr>
<td>(c_p) [cm⁻³]</td>
<td>(\sim 5 \times 10^6)</td>
<td>(\sim 3 \times 10^7)</td>
</tr>
<tr>
<td>(c_m) [mg m⁻³]</td>
<td>(\sim 1.2)</td>
<td>(\sim 20.0)</td>
</tr>
</tbody>
</table>

Particle size spectra

→ Screening of soot particle deposition efficiency \(\varepsilon \)
• Generation of turbulent eddies
• Deposition of soot particles via
 - Diffusion
 - Impaction
 - Interception
 - Turbulence

Foil thickness 50 µm
Cell density ~ 200 cpsi
Deposition Efficiency

- Build up of „filter cake“
- Increase of pressure drop
- Increase of deposition efficiency

→ Need for surface modification
- Increased surface roughness & soot storage space
- Enhanced deposition efficiency (interception & impaction)
- High initial ε
- Acceptable pressure loss (≤ 80 mbar)
- μm-sized agglomerates
HDV Engine Test Bench Results

6.9 l HDV, 326 HP, EGR, EURO III

\[\Delta p_{\text{max}} = 101 \text{ mbar} \]
Outline

• Motivation
• Experimental Setup
• Particle Deposition
• Soot Oxidation
• Summary & Conclusion
Soot Oxidation Kinetics

EURO III HDV soot
\(m_{c,0} = 42 \text{ mg} \)

<table>
<thead>
<tr>
<th>Gas</th>
<th>Flow [Nml min(^{-1})]</th>
<th>Conc. [ppm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{N}_2)</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>(\text{O}_2)</td>
<td>500</td>
<td>8.8 Vol. %</td>
</tr>
<tr>
<td>(\text{H}_2\text{O})</td>
<td>139.5 (g)</td>
<td>3.7 Vol. %</td>
</tr>
<tr>
<td>NO</td>
<td>5 (10, 15)</td>
<td>635 (1360, 2165)</td>
</tr>
<tr>
<td>NO(_2)</td>
<td>-</td>
<td>230 (370, 430)</td>
</tr>
</tbody>
</table>
Differential Rate Coefficient

\[k_{\text{diff}} = \frac{dm_C}{m_C dt} \]

- \(\text{Differential Rate Coefficient} \)
- \(k_{\text{diff}} \) in \(\text{s}^{-1} \)
- Temperatures:
 - 350°C
- Concentrations:
 - 370 ppm NO₂
 - 430 ppm NO₂
 - 230 ppm NO₂
 - 69 ppm NO₂
Concentration & Temperature Dependency

![Graph showing concentration and temperature dependency of k_{diff}.

- Data points for 300 °C and 350 °C are plotted.

- The x-axis represents \(c(\text{NO}_2) \) in ppm, ranging from 0 to 500.
- The y-axis represents \(k_{diff} \) in s\(^{-1}\), ranging from 0.0E+00 to 1.4E-04.

- The graph indicates a dependency on both concentration and temperature.
Summary & Conclusion

1. Novel deposition structures (microsphere coating)
2. High deposition efficiencies (up to 80%)
3. Low pressure drop (< 100 mbar)
4. Consistent laboratory & engine test bench results
5. Efficient soot oxidation under ESC/ETC conditions (continuous regeneration feasible)

→ Economic & reliable solution for low emission HDV-engines (EURO IV requirements)
Thank you for your attention...