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INTRODUCTION 
 
Particles in the exhaust of combustion engines mainly consist of elemental carbon and a 
variety of volatile species, being either condensed on the particles or nucleating to form 
new particles, when the exhaust gas cools down. Mainly spark ignition engines produce 
a high fraction of volatile material. Already in the hot zone these particles start to 
coagulate and form chain or grapelike agglomerates. In many cases the condensation of 
volatile material only starts when the agglomeration process is already in an advanced 
state. In the experiments described here we studied the influence of condensation on the 
structure of the agglomerates by measuring the change in size of an agglomerate when 
condensing material on it and then removing this material in a following step. In 
addition, the condensation process was monitored by a photoelectric aerosol sensor 
(PAS).  
 
 
METHODS 
 
Particles are produced by a flame soot generator (Combustion Aerosol Standard, CAST, 
Jing, 2003.). One size class was then selected by a differential mobility analyser (DMA). 
The selected particles were guided through a Sinclair la Mere type condensation 
generator where DEHS was condensed on them. By varying the temperature in the 
generator the coating thickness could be varied. In the next step the DEHS could 
optionally be removed by a thermodesorber (Burtscher et al. 2001). Finally the resulting 
size distribution was measured by a second DMA and a condensation nucleus counter 
(CPC). Parallel to this size measurement a PAS was operated. Usually the PAS is applied 
to detect adsorbates of polycyclic aromatic hydrocarbons which significantly enhance the 
response of the sensor. In our experiments we do the opposite. By using DEHS we chose 
a species which suppresses emission of photoelectrons. The condensation process can 
then be monitored by the decrease in the signal of the PAS. Another CPC right after the 
exit of the first DMA is used for normalisation to correct variations of the particle 
production. The condensation generator and the thermodesorber can be bypassed. 
 
 
 
 
 
 
                                                 
* present address: Wärstsilä Switzerland Ltd., CH-8401-Winterthur 



RESULTS and CONCLUSIONS 
 
Experiments were done with particles of 60 nm and 100 nm initial diameter. The main 
results are: 
 
¾ Adsorption of volatile material induces reconstruction process, leading to a decrease in 

diameter. 
¾ This process starts at very thin coating and proceeds further, if more material adsorbed. 
¾ Reconstruction is more pronounced for larger particles. 
¾ PAS allows to monitor this process, it responds to extremely low coverage, which 

cannot be detected by a change in diameter. 
¾ The adsorbent cannot be removed completely by thermodesorber. 
¾  
. 
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Experimental setup 
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Change in size distribution of 60-nm particles, initial diameter 63 nm. 
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Change in diameter, DC-signal and PAS signal for different coating conditions for particles with 
60 nm initial diameter. 
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Change in diameter, DC-signal and PAS signal for different coating conditions for particles with 
100 nm initial diameter 
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Adsorption and subsequent desorption by a thermodesorber: change in mean diameter and PAS 
signal for 60 nm particles 
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Adsorption and subsequent desorption by a thermodesorber: change in mean diameter and PAS 
signal for 100 nm particles 




