Metal Fibre Based DPF for Wide Range of Applications

Feng MEI
N.V. Bekaert S.A.
• Technical profile of Bekipor®
• Flexibility of Bekipor® in DPF applications
• Developing and Optimizing by Modeling
• Field testing
• Conclusion
Technical Profile - Material Structure

• Composite of FECRALLOY® fibers with various size and porosity fully subject to design
• Porosity: up to 93%
Technical Profile - *Fluid-dynamic Property*

- Air permeability of Bekipor® media heavily depends on the specific structure. A typical value ranges from 1.4×10^{-11} m2 to 2.0×10^{-10} m2 under clean air condition.

![Graph showing pressure drop at clean air condition as a function of face velocity](image)

The air permeability of most Bekipor® media drops somewhere within these curves.
Technical Profile - *Thermophysical Properties*

Density: 700 - 2800 kg/m3
Specific heat capacity: about 460 J/kg
Emissivity: ≥ 0.7
Working temperature: up to 1000 °C
Electrical resistivity*: 1.39 ohms.mm2/m

* FECRALLOY® at 20°C
Technical Profile – Ductility

Material: NPF0065, Testing results: deformation at room temperature > 2%

Bekipor® can survive substantial deformation without being damaged.

![Stress-deformation chart: NPF0065](image)

Tensile Tests (room temperature)

Compressing tests

- Room temperature
- 600 °C

![Force-deformation chart](image)
Destroying Testing in Vehicle Research Inst., Univ. of Applied Sciences Dresden under the following condition:

- 48 hours continuous operation
- Loading to 900 mbar
- Regenerating by adding additives

No damage identified on Bekipor® DPF
Technical Profile - *Corrosion resistance*

Intensive corrosion investigations have been done both internally (Bekaert Technology Center) and externally (Vehicle Research Inst. Univ. of Applied Sciences Dresden), which come up with the same conclusion:

The corrosion resistance of Bekipor® is high enough to be applied for diesel exhaust aftertreatment.
Corrosion experiments conducted by Univ. of Applied Sciences Dresden:

No substantial mass loss has been found under the specified corrosive environment.
Flexibility in DPF applications

The material properties enable high flexibility of Bekipor® in DPM aftertreatment applications

- Flexible to apply various regeneration strategies
- Flexible to be shaped into various geometries
- Flexible to customize filtration performance by application
- Flexible to the positioning of filter
Flexibility in DPF applications - Regeneration

Electrical heating: high sulfur fuel or low exhaust temperature applications

Hybrid strategy: Combining two or more techniques in one filtration system

Catalyst coating

Heating by External Combustion

Adding additives
The stack to be regenerated is partially shut off when pressure reaches threshold.
Flexibility in DPF applications – customizing filtration performance by applications

Filtration mechanisms, e.g., wall flow filtration, deep-bed filtration or mix, can be customized according to user’s regeneration strategy and engine performance.
Flexibility in DPF applications - filter positioning

This indicates that despite its very porous structure, Bekipur® would also perform well when positioning very close to the engine, where PM sizes are generally smaller but temperature are quite higher.
Developing & Optimizing by Modeling

Modeling at Media Level

In cooperation with CERTH/CPERI, Greece

Modeling at Filter Level

Comparing filter system performance by simulation under different regeneration strategies

Modeling at System Level

CFD and other modeling techniques are extensively applied at all levels to optimize and upgrade performances
Field Testing

Road grader (John Deere):

Stationary Gensets:
- Lombardini
- Cummins

Forklifts:
- Hyster with Perkins engine
Conclusion

Investigations find Bekipor® filters robust and flexible

- Material robustness: no damage found under
 - Working temperature up to 1000°C;
 - Heating/cooling rate ~100 °C/s
 - 2-3 % deformation by tensile/compressive stress

- Filtration performance flexibility: subject to needs of customers
 - 90% mean efficiency achievable at up to 240 cm/s face velocity and 27 mbar initial backpressure
 - Bearable backpressure ≥ 900mbar

- Regeneration strategy flexibility: subject to needs of customers
 - Active mode (electricity, external combustion)
 - Passive mode (catalyst, additives)
 - Mix (active + passive)
Conclusion (cont’d)

The robustness and flexibility make Bekipor® possible to be applied in wide range of DPF activities which are:

- from very low to very high exhaust temperature;
- from very low to very high backpressure constraints;
- involved with severe mechanical vibration and/or thermal instability
- using high sulfur fuel
- of special needs in filter geometry
- demanding in easy reshaping or resizing