The Measurement of Number, Size and Mass of Automotive Particulate Emissions
A CONCAWE Study
2nd ETH Workshop - ‘Nanoparticle Measurement’

August 7th 1998
Zurich

The Measurement of Number, Size and Mass of Automotive Particulate Emissions
A CONCAWE Study

Diane Hall
The Measurement of Number, Size and Mass of Automotive Particulate Emissions

Ambient PM (PM10, PM 2.5) ultrafines

PM SOURCES:
Traffic
Stationary sources
Agriculture
Domestic
Demolition
Wood fires
etc

? Impact on Human Health

Source: CONCAWE
The Measurement of Number, Size and Mass of Automotive Particulate Emissions

- literature study identified best available test methods for particulate emissions sizing (CONCAWE report no 96/56)
 - electrical mobility analysers for size distribution
 - impactors for mass distribution

- objectives
 - develop information on particulate size, number and mass distribution from current LD Diesel and LD gasoline engines
 - compare results from currently available measurement techniques
 - compare results from different laboratories

CONCAWE 1998
The Measurement of Number, Size and Mass of Automotive Particulate Emissions

TEST PROGRAMME

• detailed structured test procedures/methodology to provide a sound technical documentation
 – importance of back to back repeats
 – essential to check baseline recovery
• in co-operation with recognised outside experts
• validation of complex test results
 – regulated emissions checked against EPEFE protocol
 – detailed investigation of robustness of sizing equipment

(CONCAWE report 98/51)
The Measurement of Number, Size and Mass of Automotive Particulate Emissions

<table>
<thead>
<tr>
<th>TEST FUELS</th>
<th>TEST VEHICLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diesel</td>
<td>Diesel</td>
</tr>
<tr>
<td>D1 - Summergrade</td>
<td>V1 1.91</td>
</tr>
<tr>
<td>D2 - Wintergrade</td>
<td>V2 1.91</td>
</tr>
<tr>
<td>D3 - Swedish Class I</td>
<td>V3 2.51</td>
</tr>
<tr>
<td>Gasoline</td>
<td>Gasoline</td>
</tr>
<tr>
<td>G1 - low S/low aromatics</td>
<td>V4 1.9</td>
</tr>
<tr>
<td>G2 - high S/high aromatics</td>
<td></td>
</tr>
</tbody>
</table>

CONCAWE 1998
The Measurement of Number, Size and Mass of Automotive Particulate Emissions

TEST PROTOCOL

• daily test procedure (for single vehicle/fuel combination)
 – cold start MVEG cycle
 – 3 x ‘hot’ start MVEG cycles (oil temperature control)
 – steady state testing (idle, 30km/h, 50km/h, 70km/h, 120km/h)
 – vehicle pre-con for next day

• repeat of daily test procedure
 – day 1 (fuel A); day 2 (fuel A)
 – day 3 (fuel B); day 4 (fuel B)
 – day 5 (fuel A)
 – repeated as required

CONCAWE 1998
The Measurement of Number, Size and Mass of Automotive Particulate Emissions

Measurement of particle sizes

• steady state testing
 – complete scan across size capability of instrument
• transient testing
 – individual sizes monitored across each cycle

SMPS: - 25, 60, 100nm
DMPS: - 100, 200, 400nm

CONCAWE 1998
The Measurement of Number, Size and Mass of Automotive Particulate Emissions

(total number of particles emitted per kilometre, averaged over all fuels)
The Measurement of Number, Size and Mass of Automotive Particulate Emissions

CONCAWE 1998
The Measurement of Number, Size and Mass of Automotive Particulate Emissions
The Measurement of Number, Size and Mass of Automotive Particulate Emissions

Gasoline – ECE + EUDC Cycles

CONCAWE 1998
The Measurement of Number, Size and Mass of Automotive Particulate Emissions

The Future??
• for automotive:
 - mass measurement more accurate and gives better discrimination across a wide range
 - number measurement less accurate and appears to show less discrimination between current LD Diesel technology

• need to identify species to be measured
• need to prepare standard procedures and establish reference methods

COMMUNICATION ACROSS DISCIPLINES ESSENTIAL

CONCAWE 1998