Influence of in-cylinder soot formation and oxidation on engine-out soot emission in operation Ε B with 1st and 2nd generation biofuels

Wolfgang Mühlbauer, Roman Petsch, Christian Zöllner, Sebastian Lorenz, Dieter Brüggemann

Bayreuth Engine Research Center (BERC), Department of Engineering Thermodynamics and Transport Processes (LTTT), Universität Bayreuth, 95447 Bayreuth, Germany, LTTT@uni-bayreuth.de

MOTIVATION

Challenges for developers of future diesel engines:

- 1. Reduction of particulate matter (PM) nitrogen \square oxide (NO_x) trade-off [1,2]
- 2. Replacement of fossil fuel [3,4]

Potential solutions

- 1. Alternative combustion concepts, HCCI (at best $\lambda_{global} = \lambda_{local}$)
- 2. Biogenic fuels (1st and 2nd generation)
- → Development of biogenic fuels gives further degree to achieve HCCI operation mode

Target of the experiments:

Analyzing in-cylinder soot formation and oxidation process as well as engine-out soot emissions of a 1st and 2nd generation biogenic fuel in comparison to a reference diesel fuel

Engine and operating points

Optically accessible single-cylinder diesel engine

Displacement	500 cm ³
Injection pressure	Up to 160 MPa
Boost pressure	0.105 MPa – 0.30 MPa
Boost temperature	293-363 K
Piston bowl shape	Omega
Injector type	Bosch, solenoid, 6-hole
Injection system	Common rail
Exhaust gas recirculation	Adjustable with different gases (air, N_2 , CO_2 ,)

Engine operating parameters

LEHRSTUHL FÜR

TECHNISCHE

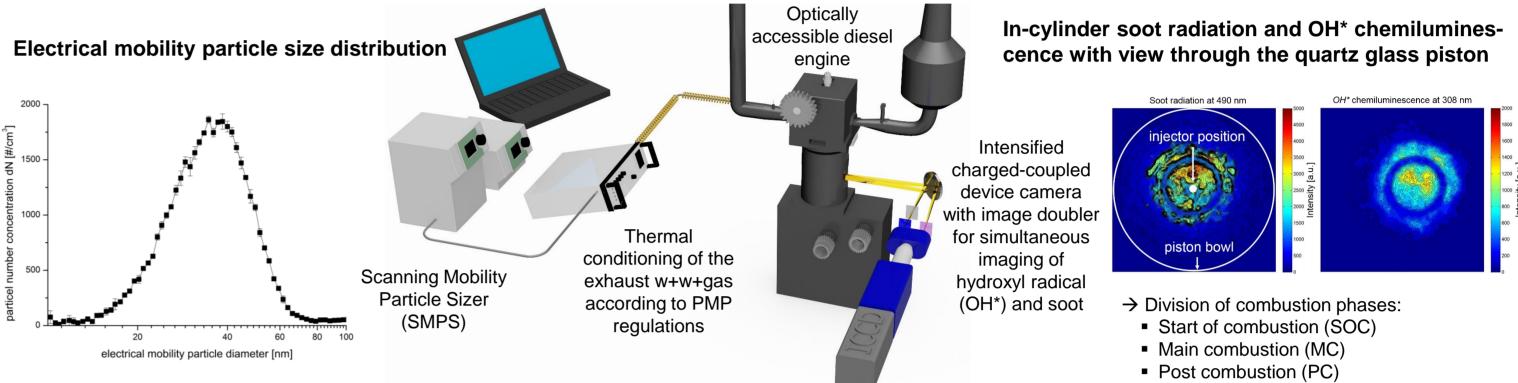
Fuel	Injection pressure <i>p_i</i>	Injected fuel mass m _i	Start of injection SO/	Engine speed n	Boost pressure p_b
В0	300 bar	12.0 mg	6 °CA BTDC	600 rpm	1.05 bar
	1000 bar	12.0 mg	6 °CA BTDC	600 rpm	1.05 bar
B100	300 bar	13.6 mg	6 °CA BTDC	600 rpm	1.05 bar
	1000 bar	13.6 mg	6 °CA BTDC	600 rpm	1.05 bar
DNBE	300 bar	13.4 mg	6 °CA BTDC	600 rpm	1.05 bar
	1000 bar	13.4 mg	6 °CA BTDC	600 rpm	1.05 bar

RC

BAYREUTH

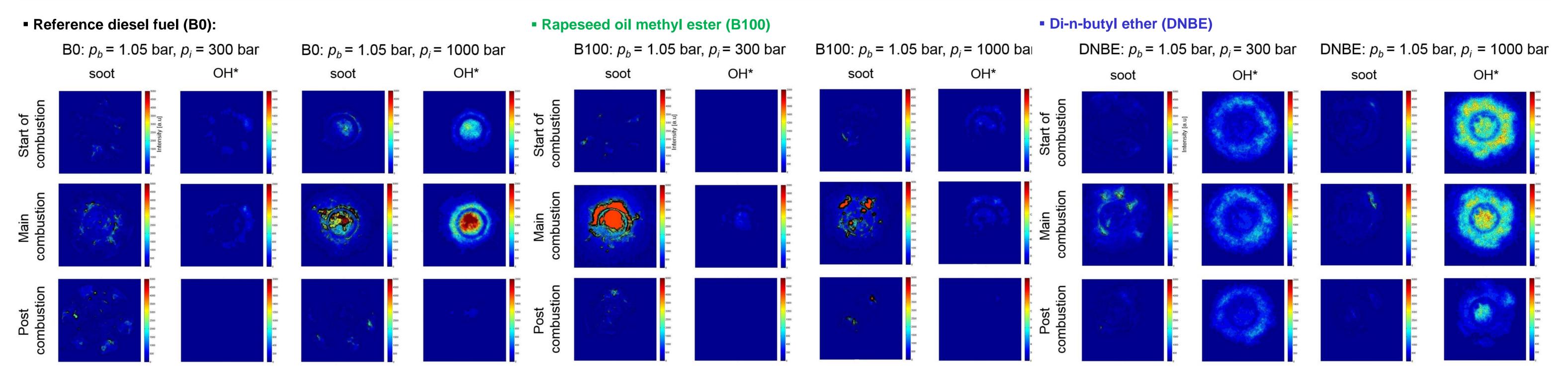
Research

ENGINE

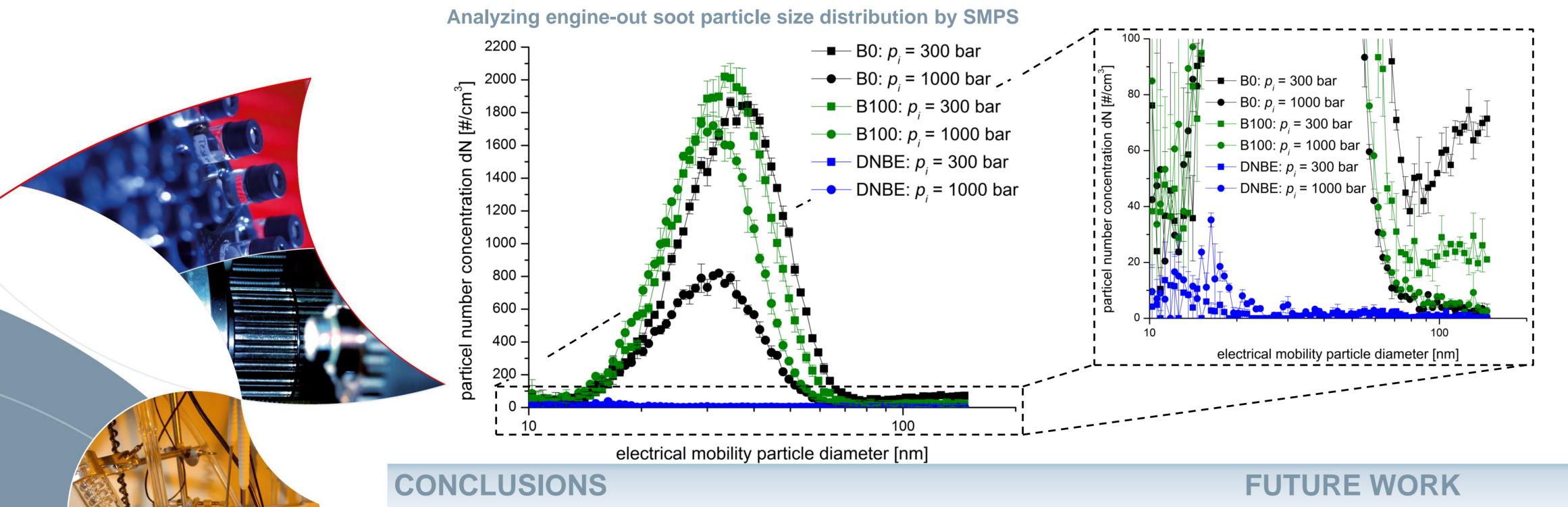

DIESEL FUELS

Summary of physical and chemical fuel properties

fuel	Density at 15 °C [kg/m³]	Cetane number [-]	Lower heating value [MJ/kg]	Dyn. Visco- sity at 40 °C [mPa s]	Surface ten- sion at 15 °C [mN/m]	Oxygen / Sul- phur content [weight-%]	Initial / Final boiling point [°C]	
Reference diesel fuel (B0)	834	53	42.5	2.2	28.6	0 / < 5	203 / 360	tration dN F#/cm ³ 1
Rapeseed oil methyl ester (RME, B100)	883	53	37.5	3.5	31.9	11 / < 5	343 / 470	tival number concen
Di-n-butyl ether (DNBE)	767	100	38.0	0.5	23.1	12 / < 5	142 / 142	Dar


MEASUREMENT TECHNIQUES AND EVALUATION METHODS

Analysis of the in-cylinder combustion process and of physical properties of emitted particles


RESULTS

Analyzing the in-cylinder soot formation and oxidation process by simultaneous imaging of OH* and soot

- At low p_i: SOC and PC near bowl wall, MC near the bowl center; low soot oxidation, high soot formation.
- At high p_i: SOC and MC near bowl center, PC near bowl wall; higher soot oxidation by OH*.
- At low p_i: SOC and PC near bowl wall, MC more distributed near the bowl center; low soot oxidation, high soot formation.
- At high *p_i*: SOC and MC near bowl center, PC near bowl wall; higher soot oxidation by OH* and molecular (fuel containing) oxygen, lower soot formation.

• Low soot formation at both p_i , high soot oxidation by OH* and by molecular (fuel containing) oxygen during all combustion phases. More homogeneous combustion at both p_i for DNBE than for B0 and B100 due to better mixture preparation based on fuel properties (low boiling point, dynamic viscosity and surface tension).

- Lower particle number concentrations (PNC) with smaller particles at higher p_i for B0 and B100.
- A bit higher PNC with smaller particles for B100 than for B0 due to higher m_i (based on its lower heating value).
- Lowest PNC for DNBE in contrast to B0 and B100 due to soot free and more homogeneous in-cylinder combustion.

- Analyzing in-cylinder soot formation and oxidation process of 1st and 2nd generation biofuels Further engine operating points (injection, boost pressure, start of injection exhaust gas by optical measurement techniques. recirculation).
- Examining engine-out particle size distribution by a SMPS.
- New 2nd generation biofuels (e.g. DNBE) for soot free in-cylinder combustion.
- New 2nd generation biofuels support to achieve HCCI.
- Reduction of raw PN emissions during in-cylinder combustion.

Acknowledgements

The research project is funded by the German Ministry of Food, Agriculture and Consume Protection (BMELV) through its Renewable for Resources (Fachagentur Nachwachsende Rohstoffe e.V. - FNR) as well as by the Research Association for Combustion Engines e.V. (Forschungsvereinigung Verbrennungskraftmaschinen e. V. – FVV).

Gefördert durch

ufgrund eines Beschlusses s Deutschen Bundestage

nd Verbraucherschutz

- Further fuels (synthetic, 2nd generation).
- Optical measurement technique for local temperature and soot fraction determination.
- Optical examination of fuel injection and mixture formation.

References

2013.

[1] Johnson, T.V., "Diesel Emissions in Review," SAE Int. J. Engines 4(1):143–157, 2011.

[2] Johnson, T.V., "Diesel Emission Control in Review," SAE Int. J. Fuels Lubr. 2(1):1–12, 2009.

[3] Janssen, A., Muether, M., Pischinger, S., Kolbeck, A. et al., "Tailor-Made Fuels for Future Advanced Diesel Combustion Engines," SAE Technical Paper 2009-01-1811, 2009.

[4] Jenkins, R.W., Munro, M., Nash, S., and Chuck, C.J., "Potential renewable oxygenated biofuels for the aviation and road transport sectors," Fuel 103:593-599,

www.berc.uni-bayreuth.de **AUTOMOTIVE COMPONENTS ENGINEERING**